×

zbMATH — the first resource for mathematics

Multiprecision algorithms for computing the matrix logarithm. (English) Zbl 1390.15073

MSC:
15A60 Norms of matrices, numerical range, applications of functional analysis to matrix theory
65F30 Other matrix algorithms (MSC2010)
65F60 Numerical computation of matrix exponential and similar matrix functions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. H. Al-Mohy, A more accurate Briggs method for the logarithm, Numer. Algorithms, 59 (2012), pp. 393–402, . · Zbl 1236.65018
[2] A. H. Al-Mohy and N. J. Higham, A new scaling and squaring algorithm for the matrix exponential, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 970–989, . · Zbl 1194.15021
[3] A. H. Al-Mohy and N. J. Higham, Improved inverse scaling and squaring algorithms for the matrix logarithm, SIAM J. Sci. Comput., 34 (2012), pp. C153–C169, . · Zbl 1252.15027
[4] A. H. Al-Mohy, N. J. Higham, and S. D. Relton, Computing the Fréchet derivative of the matrix logarithm and estimating the condition number, SIAM J. Sci. Comput., 35 (2013), pp. C394–C410, . · Zbl 1362.65051
[5] D. H. Bailey, H. Yozo, X. S. Li, and B. Thompson, ARPREC: An Arbitrary Precision Computation Package, Tech. report, Lawrence Berkeley National Laboratory, 2002, .
[6] G. A. Baker, Jr. and P. Graves-Morris, Padé Approximants, 2nd ed., Encyclopedia of Mathematics and Its Applications 59, Cambridge University Press, Cambridge, UK, 1996.
[7] R. H. Bartels and G. W. Stewart, Algorithm 432: Solution of the matrix equation AX+XB=C, Comm. ACM, 15 (1972), pp. 820–826, . · Zbl 1372.65121
[8] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach to numerical computing, SIAM Rev., 59 (2017), pp. 65–98, . · Zbl 1356.68030
[9] \AA. Björck and S. Hammarling, A Schur method for the square root of a matrix, Linear Algebra Appl., 52/53 (1983), pp. 127–140, .
[11] H. Briggs, Arithmetica Logarithmica, William Jones, London, 1624, .
[12] J. R. Cardoso and R. Ralha, Matrix arithmetic-geometric mean and the computation of the logarithm, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 719–743, . · Zbl 1338.65121
[13] J. R. Cardoso and F. Silva Leite, Theoretical and numerical considerations about Padé approximants for the matrix logarithm, Linear Algebra Appl., 330 (2001), pp. 31–42, . · Zbl 0981.65053
[14] S. H. Cheng, N. J. Higham, C. S. Kenney, and A. J. Laub, Approximating the logarithm of a matrix to specified accuracy, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 1112–1125, . · Zbl 0989.65057
[15] M. Courbariaux, Y. Bengio, and J.-P. David, Training Deep Neural Networks with Low Precision Multiplications, preprint, , 2015.
[16] P. I. Davies and N. J. Higham, A Schur–Parlett algorithm for computing matrix functions, SIAM J. Matrix Anal. Appl., 25 (2003), pp. 464–485, . · Zbl 1052.65031
[17] J. E. Dennis, Jr. and V. Torczon, Direct search methods on parallel machines, SIAM J. Optim., 1 (1991), pp. 448–474, . · Zbl 0754.90051
[18] L. Dieci, B. Morini, A. Papini, and A. Pasquali, On real logarithms of nearby matrices and structured matrix interpolation, Appl. Numer. Math., 29 (1999), pp. 145–165, . · Zbl 0930.65045
[19] N. J. Dingle and N. J. Higham, Reducing the influence of tiny normwise relative errors on performance profiles, ACM Trans. Math. Software, 39 (2013), 24, . · Zbl 1298.65086
[20] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Math. Programming, 91 (2002), pp. 201–213, . · Zbl 1049.90004
[21] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann, MPFR: A multiple-precision binary floating-point library with correct rounding, ACM Trans. Math. Software, 33 (2007), 13, . · Zbl 1365.65302
[22] A. Glaser, X. Liu, and V. Rokhlin, A fast algorithm for the calculation of the roots of special functions, SIAM J. Sci. Comput., 29 (2007), pp. 1420–1438, . · Zbl 1145.65015
[23] G. H. Golub, S. Nash, and C. F. Van Loan, A Hessenberg–Schur method for the problem AX + XB = C, IEEE Trans. Automat. Control, AC-24 (1979), pp. 909–913, .
[24] G. H. Golub and J. H. Welsch, Calculation of Gauss quadrature rules, Math. Comp., 23 (1969), pp. 221–230, . · Zbl 0179.21901
[25] T. Granlund and the GMP development team, GNU MP: The GNU Multiple Precision Arithmetic Library, .
[26] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, Deep learning with limited numerical precision, in Proceedings of the 32nd International Conference on Machine Learning, JMLR: Workshop and Conference Proceedings 37, 2015, pp. 1737–1746, .
[27] D. J. Higham and N. J. Higham, MATLAB Guide, 3rd ed., SIAM, Philadelphia, 2017.
[28] N. J. Higham, The Matrix Computation Toolbox, .
[29] N. J. Higham, The Matrix Function Toolbox, .
[30] N. J. Higham, Evaluating Padé approximants of the matrix logarithm, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 1126–1135, . · Zbl 0989.65054
[31] N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, 2008, .
[32] N. J. Higham and E. Deadman, A Catalogue of Software for Matrix Functions. Version 2.0, MIMS EPrint 2016.3, Manchester Institute for Mathematical Sciences, The University of Manchester, UK, Jan. 2016, , updated March 2016.
[33] N. J. Higham and L. Lin, A Schur–Padé algorithm for fractional powers of a matrix, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1056–1078, . · Zbl 1242.65091
[34] N. J. Higham and L. Lin, An improved Schur–Padé algorithm for fractional powers of a matrix and their Fréchet derivatives, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 1341–1360, . · Zbl 1279.65050
[35] N. J. Higham and F. Tisseur, A block algorithm for matrix \(1\)-norm estimation, with an application to 1-norm pseudospectra, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1185–1201, . · Zbl 0959.65061
[36] W. Hu, H. Zuo, O. Wu, Y. Chen, Z. Zhang, and D. Suter, Recognition of adult images, videos, and web page bags, ACM Trans. Multimedia Comput. Commun. Appl., 78 (2011), 28, .
[39] F. Johansson et al., Mpmath: A Python Library for Arbitrary-Precision Floating-Point Arithmetic, .
[40] C. S. Kenney and A. J. Laub, Condition estimates for matrix functions, SIAM J. Matrix Anal. Appl., 10 (1989), pp. 191–209, . · Zbl 0684.65039
[41] C. S. Kenney and A. J. Laub, Padé error estimates for the logarithm of a matrix, Internat. J. Control, 50 (1989), pp. 707–730, . · Zbl 0685.65036
[44] A. Meurer, C. P. Smith, M. Paprocki, O. C̆ertik, S. B. Kirpichev, M. Rocklin, A. Kumar, S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake, S. Vig, B. E. Granger, R. P. Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M. J. Curry, A. R. Terrel, Š. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and A. Scopatz, SymPy: Symbolic computing in Python, PeerJ Comput. Sci., 3 (2017), e103, .
[47] The Sage Developers, Sage Mathematics Software, .
[49] SymPy Development Team, Sympy: Python Library for Symbolic Mathematics, .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.