zbMATH — the first resource for mathematics

Hearts of t-structures in the derived category of a commutative Noetherian ring. (English) Zbl 1390.18026
Let \(\mathcal{D}\) be a triangulated category. A t-structure in \(\mathcal{D}\) consists of a pair of full subcategories satisfying suitable axioms which ensure that their intersection is an abelian category, called the heart of the t-structure. For a commutative Noetherian ring \(R\), the authors prove that all compactly generated t-structures in the (unbounded) derived category \(\mathcal{D}(R)\) of \(R\) associated to a left bounded filtration by supports of Spec(\(R\)) have a heart which is a Grothendieck category, and describe those compactly generated t-structures whose heart is a module category. These results are used to deduce some geometric consequences for a compactly generated t-structure in the derived category \(\mathcal{D}(\mathbb{X})\) of an affine Noetherian scheme \(\mathbb{X}\).

18E30 Derived categories, triangulated categories (MSC2010)
13D09 Derived categories and commutative rings
16E35 Derived categories and associative algebras
Full Text: DOI arXiv
[1] Alonso Tarr\'\i o, Leovigildo; Jerem\'\i as L\'opez, Ana; Saor\'\i n, Manuel, Compactly generated \(t\)-structures on the derived category of a Noetherian ring, J. Algebra, 324, 3, 313-346, (2010) · Zbl 1237.14011
[2] Alonso Tarr\'\i o, Leovigildo; Jerem\'\i as L\'opez, Ana; Souto Salorio, Mar\'\i a Jos\'e, Construction of \(t\)-structures and equivalences of derived categories, Trans. Amer. Math. Soc., 355, 6, 2523-2543 (electronic), (2003) · Zbl 1019.18007
[3] Alonso Tarr\'\i o, Leovigildo; Jerem\'\i as L\'opez, Ana; Souto Salorio, Mar\'\i a Jos\'e, Bousfield localization on formal schemes, J. Algebra, 278, 2, 585-610, (2004) · Zbl 1060.18007
[4] Atiyah, M. F.; Macdonald, I. G., Introduction to commutative algebra, ix+128 pp., (1969), Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. · Zbl 1351.13002
[5] Be\u \i linson, A. A., Coherent sheaves on \(\textbf{P}^{n}\) and problems in linear algebra, Funktsional. Anal. i Prilozhen., 12, 3, 68-69, (1978) · Zbl 0402.14006
[6] Be\u \i linson, A. A.; Bernstein, J.; Deligne, P., Faisceaux pervers. Analysis and topology on singular spaces, I, Luminy, 1981, Ast\'erisque 100, 5-171, (1982), Soc. Math. France, Paris
[7] Bridgeland, Tom, Stability conditions on triangulated categories, Ann. of Math. (2), 166, 2, 317-345, (2007) · Zbl 1137.18008
[8] Casacuberta, Carles; Neeman, Amnon, Brown representability does not come for free, Math. Res. Lett., 16, 1, 1-5, (2009) · Zbl 1188.18008
[9] [CG]CG R. Colpi and E. Gregorio, \emph The heart of a cotilting torsion pair is a Grothendieck category, preprint.
[10] Colpi, Riccardo; Gregorio, Enrico; Mantese, Francesca, On the heart of a faithful torsion theory, J. Algebra, 307, 2, 841-863, (2007) · Zbl 1120.18008
[11] Colpi, Riccardo; Mantese, Francesca; Tonolo, Alberto, When the heart of a faithful torsion pair is a module category, J. Pure Appl. Algebra, 215, 12, 2923-2936, (2011) · Zbl 1269.18005
[12] Gabriel, Pierre, Des cat\'egories ab\'eliennes, Bull. Soc. Math. France, 90, 323-448, (1962) · Zbl 0201.35602
[13] Geigle, Werner; Lenzing, Helmut, Perpendicular categories with applications to representations and sheaves, J. Algebra, 144, 2, 273-343, (1991) · Zbl 0748.18007
[14] \bibGTbook label=GT, author=G\`‘obel, R\'’udiger, author=Trlifaj, Jan, title=Approximations and endomorphism algebras of modules, series=de Gruyter Expositions in Mathematics, volume=41, pages=xxiv+640, publisher=Walter de Gruyter GmbH & Co. KG, Berlin, date=2006, doi=10.1515/9783110199727, isbn=978-3-11-011079-1, isbn=3-11-011079-2, review=\MR 2251271,
[15] Gorodentsev, A. L.; Kuleshov, S. A.; Rudakov, A. N., \(t\)-stabilities and \(t\)-structures on triangulated categories, Izv. Ross. Akad. Nauk Ser. Mat.. Izv. Math., 68 68, 4, 749-781, (2004) · Zbl 1062.18009
[16] Happel, Dieter; Reiten, Idun; Smal\o , Sverre O., Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc., 120, 575, viii+ 88 pp., (1996) · Zbl 0849.16011
[17] Hartshorne, Robin, Algebraic geometry, xvi+496 pp., (1977), Springer-Verlag, New York-Heidelberg · Zbl 0367.14001
[18] Hoshino, Mitsuo; Kato, Yoshiaki; Miyachi, Jun-Ichi, On \(t\)-structures and torsion theories induced by compact objects, J. Pure Appl. Algebra, 167, 1, 15-35, (2002) · Zbl 1006.18011
[19] Jerem\'\i as L\'opez, Ana, El grupo fundamental relativo. Teor\'\i a de Galois y localizaci\'on, \'Alxebra [Algebra] 56, xviii+151 pp., (1991), Universidad de Santiago de Compostela, Departamento de \'Algebra, Santiago de Compostela · Zbl 0726.13007
[20] Keller, Bernhard; Nicol\'as, Pedro, Weight structures and simple dg modules for positive dg algebras, Int. Math. Res. Not. IMRN, 5, 1028-1078, (2013) · Zbl 1312.18007
[21] Kunz, Ernst, Introduction to commutative algebra and algebraic geometry, xi+238 pp., (1985), Birkh\"auser Boston, Inc., Boston, MA · Zbl 1263.13001
[22] Lazard, Daniel, Autour de la platitude, Bull. Soc. Math. France, 97, 81-128, (1969) · Zbl 0174.33301
[23] Mantese, Francesca; Tonolo, Alberto, On the heart associated with a torsion pair, Topology Appl., 159, 9, 2483-2489, (2012) · Zbl 1271.18010
[24] Matsumura, Hideyuki, Commutative ring theory, Cambridge Studies in Advanced Mathematics 8, xiv+320 pp., (1986), Cambridge University Press, Cambridge · Zbl 0603.13001
[25] Nicol\'as, Pedro; Saor\'\i n, Manuel, Parametrizing recollement data for triangulated categories, J. Algebra, 322, 4, 1220-1250, (2009) · Zbl 1187.18008
[26] Pareigis, Bodo, Categories and functors, Translated from the German. Pure and Applied Mathematics, Vol. 39, viii+268 pp., (1970), Academic Press, New York-London
[27] Parra, Carlos E.; Saor\'\i n, Manuel, Direct limits in the heart of a t-structure: the case of a torsion pair, J. Pure Appl. Algebra, 219, 9, 4117-4143, (2015) · Zbl 1333.18017
[28] Parra, Carlos E.; Saor\'\i n, Manuel, On hearts which are module categories, J. Math. Soc. Japan, 68, 4, 1421-1460, (2016) · Zbl 1397.16026
[29] Popescu, N., Abelian categories with applications to rings and modules, xii+467 pp., (1973), Academic Press, London-New York · Zbl 0271.18006
[30] Souto Salorio, Mar\'\i a Jos\'e; Trepode, Sonia, T-structures on the bounded derived category of the Kronecker algebra, Appl. Categ. Structures, 20, 5, 513-529, (2012) · Zbl 1276.18013
[31] Stanley, Don, Invariants of \(t\)-structures and classification of nullity classes, Adv. Math., 224, 6, 2662-2689, (2010) · Zbl 1204.18006
[32] Stenstr\"om, Bo, Rings of quotients, viii+309 pp., (1975), Springer-Verlag, New York-Heidelberg · Zbl 0296.16001
[33] Verschoren, A., Relative invariants of sheaves, Monographs and Textbooks in Pure and Applied Mathematics 104, xiv+249 pp., (1987), Marcel Dekker, Inc., New York · Zbl 0638.14008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.