×

zbMATH — the first resource for mathematics

Reducing the dynamical degradation by bi-coupling digital chaotic maps. (English) Zbl 1390.37058

MSC:
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
68Q15 Complexity classes (hierarchies, relations among complexity classes, etc.)
65C10 Random number generation in numerical analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Dascalescu, A. C.; Boriga, R., A new method to improve cryptographic properties of chaotic discrete dynamical systems, Int. Conf. Internet Technology and Secured Transactions (ICITST-2012), 60-65, (2012)
[2] Dascalescu, A. C.; Boriga, R.; Răcuciu, C., A new pseudorandom bit generator using compounded chaotic tent maps, 9th Int. Conf. Communications, 339-342, (2012)
[3] Deng, Y. S.; Hu, H. P.; Xiong, N. X.; Xiong, W.; Liu, L. F., A general hybrid model for chaos robust synchronization and degradation reduction, Inform. Sci., 305, 146-164, (2015) · Zbl 1360.93022
[4] Ecuyer, P. L.; Simard, R., Testu01: A C library for empirical testing of random number generators, ACM Trans. Math. Softw., 33, 1-22, (2007) · Zbl 1365.65008
[5] Eidelman, Y.; Gohberg, I., Inversion formulas and linear complexity algorithm for diagonal plus semiseparable matrices, Comput. Math. Appl., 33, 69-79, (1997) · Zbl 0870.65020
[6] Guyeux, C.; Wang, Q. X.; Bahi, J. M., Web Information Systems and Mining, 6318, A pseudo random numbers generator based on chaotic iterations: application to watermarking, 201-211, (2010)
[7] Kocarev, L.; Szczepanski, J.; Amigo, J. M.; Tomovski, I., Discrete chaos part I: theory, IEEE Trans. Circuits Syst.-I, 53, 1300-1309, (2006) · Zbl 1374.37047
[8] Li, S.; Mou, X.; Cai, Y., Improving security of a chaotic encryption approach, Phys. Lett. A, 290, 127-133, (2001)
[9] Li, S.; Chen, G.; Mou, X., On the dynamical degradation of digital piecewise linear chaotic maps, Int. J. Bifurcation and Chaos, 15, 3119-3151, (2004) · Zbl 1093.37514
[10] Li, C. Y.; Chen, Y. H.; Chang, T. Y.; Deng, L. Y.; To, K., Period extension and randomness enhancement using high-throughput reseeding-mixing PRNG, IEEE Trans. Very Large Scale Integration Systems, 20, 385-389, (2012)
[11] Liu, L. F.; Hu, H. P.; Deng, Y. S., An analog-digital mixed method for solving the dynamical degradation of digital chaotic systems, IMA J. Math. Contr. Inform., 32, 703-715, (2015) · Zbl 1328.93161
[12] Liu, L. F.; Miao, S. X.; Cheng, M. F.; Gao, X. J., A pseudorandom bit generator based on new multi-delayed Chebyshev map, Inform. Process. Lett., 116, 674-681, (2016)
[13] Liu, L. F.; Miao, S. X., Delay-introducing method to improve the dynamical degradation of a digital chaotic map, Inform. Sci., 396, 1-13, (2017)
[14] Liu, L. F.; Miao, S. X., An image encryption algorithm based on Baker map with varying parameter, Multimed. Tools Appl., 76, 16511-16527, (2017)
[15] Liu, S. B.; Sun, J.; Xu, Z. Q.; Liu, J. S., Digital chaotic sequence generator based on coupled chaotic systems, Chin. Phys. B, 18, 5219-5227, (2009)
[16] Liu, N., Pseudo-randomness and complexity of binary sequences generated by the chaotic system, Commun. Nonlin. Sci. Numer. Simul., 16, 761-768, (2011) · Zbl 1221.37234
[17] Liu, Y.; Tong, X. J., A new pseudorandom number generator based on complex number chaotic equation, Chin. Phys. B, 21, 090506, (2012)
[18] Nagaraj, N.; Shastry, M. C.; Vaidya, P. G., Increasing average period lengths by switching of robust chaos maps in finite precision, Eur. Phys. J. Special Topics, 165, 73-83, (2008)
[19] Ozkaynak, F., A novel method to improve the performance of chaos based evolutionary algorithms, Optik, 126, 5434-5438, (2015)
[20] Patidar, V.; Sud, K. K., A pseudo random bit generator based on chaotic logistic map and its statistical testing, Informatica, 33, 441-452, (2009) · Zbl 1189.68057
[21] Persohn, K. J.; Povinelli, R. J., Analyzing logistic map pseudorandom number generators for periodicity induced by finite precision floating-point representation, Chaos Solit. Fract., 45, 238-245, (2012)
[22] Pincus, S. M., Approximate entropy as a measure of system complexity, Proc. Natl. Acad. Sci. USA, 88, 2297-2301, (1991) · Zbl 0756.60103
[23] Rukin, A.; Soto, J.; Nechvatal, J., A statistical test suite for random and pseudorandom number generators for cryptographic applications, NIST Special Publication 800-22, 15, (2001)
[24] Sang, T.; Wang, R.; Yan, Y., Perturbance-based algorithm to expand cycle length of chaotic key stream, Electron. Lett., 37, 873-874, (1998)
[25] Sun, F.; Liu, S., Cryptographic pseudo-random sequence from the spatial chaotic map, Chaos Solit. Fract., 41, 2216-2219, (2009)
[26] Tong, X. J.; Cui, M. G., Feedback image encryption algorithm with compound chaotic stream cipher based on perturbation, Sci. China, 53, 191-202, (2010)
[27] Wang, Y.; Wong, K.; Liao, X.; Xiang, T.; Chen, G., A chaos-based image encryption algorithm with variable control parameters, Chaos Solit. Fract., 41, 1773-1783, (2009) · Zbl 1198.94005
[28] Wang, Y.; Liu, Z. L.; Ma, J. B.; He, H. Y., A pseudorandom number generator based on piecewise logistic map, Nonlin. Dyn., 83, 2373-2391, (2016) · Zbl 1354.65012
[29] Wheeler, D. D.; Matthews, R., Supercomputer investigations of a chaotic encryption algorithm, Cryptologia, 15, 140-151, (1991)
[30] Zhou, Y.; Hua, Z.; Pun, C.; Chen, C. L. P., Cascade chaotic systems with applications, IEEE Trans. Cybern., 45, 2001-2012, (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.