×

Transmuted Erlang-truncated exponential distribution. (English) Zbl 1390.60063

Summary: This article introduces a new lifetime distribution called the transmuted Erlang-truncated exponential (TETE) distribution. This new distribution generalizes the two parameter Erlang-truncated exponential (ETE) distribution. Closed form expressions for some of its distributional and reliability properties are provided. The method of maximum likelihood estimation was proposed for estimating the parameters of the TETE distribution. The hazard rate function of the TETE distribution can be constant, increasing or decreasing depending on the value of the transmutation parameter \(\Phi[-1,1]\); this property makes it more reasonable for modelling complex lifetime data sets than the ETE distribution that exhibits only a constant hazard rate function. The goodness of fit of the TETE distribution in analyzing real life time data was investigated by comparing its fit with that provided by the ETE distribution and the results show that the TETE distribution is a better candidate for the data. The stability of the TETE distribution parameters was established through a simulation study.

MSC:

60E05 Probability distributions: general theory
62H10 Multivariate distribution of statistics
62N05 Reliability and life testing
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abdul-Moniem I. B. and Seham M., Transmuted Gompertz distribution, Comput. Appl. Math. J. 1 (2015), no. 3, 88-96.
[2] Afify A. Z., Nofal Z. M., Yousof H. M., El Gebaly Y. M. and Butt N. S., The transmuted Weibull lomax distribution: Properties and application, Pak. J. Stat. Oper. Res. 11 (2015), no. 1, 135-152.
[3] Ahmad A., Ahmad S. P. and Ahmed A., Transmuted inverse rayleigh distribution: A generalization of the inverse Rayleigh distribution, Math. Theory Model. 4 (2014), no. 7, 90-98.
[4] Aryal G. R., Transmuted log-logistic distribution, J. Stat. Appl. Pro. 2 (2013), no. 1, 11-20.
[5] Aryal G. R. and Tsokos C. P., On the transmuted extreme value distribution with application, Nonlinear Anal. 71 (2009), no. 12, 1401-1407.
[6] Aryal G. R. and Tsokos C. P., Transmuted Weibull distribution: A generalization of the Weibull probability distribution, Eur. J. Pure Appl. Math. 4 (2011), no. 2, 89-102. · Zbl 1389.62150
[7] Ashour S. K. and Eltehiwy M. A., Transmuted exponentiated lomax Distribution, Aust. J. Basic Appl. Sci. 7 (2013), no. 7, 658-667.
[8] Ashour S. K. and Eltehiwy M. A., Transmuted lomax distribution, Amer. J. Appl. Math. Stat. 1 (2013), no. 6, 121-127.
[9] Dey S. K., Kumar D. and Park C., Transmuted gamma-mixed Rayleigh distribution: Properties and estimation with bladder cancer data example, preprint 2015.
[10] El-Alosey A. R., Random sum of new type of mixture of distribution, Int. J. Stat. Syst. 2 (2007), 49-57.
[11] Elbatal I., Transmuted generalized inverted exponential distribution, Econom. Qual. Control 28 (2013), no. 2, 125-133. · Zbl 1401.62084
[12] Elbatal I., Transmuted modified inverse Weibull distribution: A Generalization of the modified inverse Weibull probability distribution, Int. J. Math. Arch. 4 (2013), no. 8, 117-129.
[13] Elbatal I., Asha G. and Raja A., Transmuted exponentiated Fréchet distribution: Properties and applications, J. Stat. Appl. Pro. 3 (2014), no. 3, 379-394.
[14] Elbatal I., Diab L. S. and Alim N. A., Transmuted generalized linear exponential distribution, Int. J. Comput. Appl. 83 (2013), no. 17, 29-37.
[15] Elbatal I. and Elgarhy M., Transmuted quasi Lindley distribution: A generalization of the quasi Lindley distribution, Int. J. Pure Appl. Sci. Technol. 18 (2013), no. 2, 59-70.
[16] Hussian M. A., Transmuted exponentiated gamma distribution: A generalization of the exponentiated gamma probability distribution, Appl. Math. Sci. 8 (2014), no. 27, 1297-1310.
[17] Inlow M., A moment generating function proof of the Lindeberg-Lévy central limit theorem, Amer. Stat. 64 (2010), no. 3, 228-230. · Zbl 1202.60035
[18] Khan M. S. and King R., Transmuted modified Weibull distribution: A generalization of the modified Weibull probability distribution, Eur. J. Pure Appl. Math. 6 (2013), no. 1, 66-88. · Zbl 1389.90103
[19] Khan M. S. and King R., Transmuted modified inverse Rayleigh distribution, Aust. J. Stat. 44 (2015), no. 3, 17-29.
[20] Khan M. S., King R. and Hudson I. L., Transmuted Kumaraswamy distribution, Statistics 17 (2016), no. 2, 1-28.
[21] Mahmoud M. R. and Mandouh R. M., On The transmuted Fréchet distribution, J. Appl. Sci. Res. 9 (2013), no. 10, 5553-5561.
[22] Mansour M. M., Enayat M. A., Hamed S. M. and Mohamed M. S., A new transmuted additive Weibull distribution based on a new method for adding a parameter to a family of distributions, Int. J. Appl. Math. Sci. 8 (2015), no. 1, 31-54.
[23] Mansour M. M. and Mohamed S. M., A new generalized of transmuted Lindley distribution, Appl. Math. Sci. 9 (2015), no. 55, 2729-2748.
[24] McLeish D., Simulating random variables using moment-generating functions and the saddlepoint approximation, J. Stat. Comput. Simul. 84 (2014), no. 2, 324-334.
[25] Meintanis S. G., Testing skew normality via the moment generating function, Math. Methods Statist. 19 (2010), no. 1, 64-72. · Zbl 1282.62123
[26] Merovci F., Transmuted exponentiated exponential distribution, Math. Sci. Appl. E-Notes 1 (2013), no. 2, 112-122.
[27] Merovci F., Transmuted Lindley distribution, Int. J. Open Problems Compt. Math. 6 (2013), no. 2, 63-72.
[28] Merovci F., Transmuted Rayleigh distribution, Aust. J. Stat. 42 (2013), no. 1, 21-31.
[29] Merovci F. and Elbatal I., Transmuted Lindley-geometric distribution and its applications, J. Stat. Appl. Pro. 3 (2014), no. 1, 77-91.
[30] Merovci F. and Puka L., Transmuted Pareto distribution, ProbStat Forum 7 (2014), 1-11. · Zbl 1284.62102
[31] Pal M. and Tiensuwan M., The beta transmuted Weibull distribution, Aust. J. Stat. 43 (2014), no. 2, 133-149.
[32] Quesenberry C. P. and Kent J., Selecting among probability distributions used in reliability, Technometrics 24 (1982), no. 1, 59-65.
[33] Saboor A., Elbatal I. and Cordeiro G. M., The transmuted exponentiated Weibull geometric distribution: Theory and applications, Hacet. J. Math. Stat. 45 (2016), no. 3, 973-987. · Zbl 1359.62056
[34] Shaw W. T. and Buckley I. R., The alchemy of probability distributions: Beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map, preprint 2009, .
[35] Song K. S., Rényi information, loglikelihood and an intrinsic distribution measure, J. Statist. Plann. Inference 93 (2001), no. 1, 51-69. · Zbl 0997.62003
[36] Tian Y., Tian M. and Zhu Q., Transmuted linear exponential distribution: A new generalization of the linear exponential distribution, Comm. Statist. Simulation Comput. 43 (2014), no. 10, 2661-2677. · Zbl 1462.62593
[37] ul Haq M. A., Butt N. S., Usman R. M. and Fattah A. A., Transmuted power function distribution, Gazi Univ. J. Sci. 29 (2016), no. 1, 177-185.
[38] Villa E. R. and Escobar L. A., Using moment generating functions to derive mixture distributions, Amer. Statist. 60 (2012), no. 1, 75-80.
[39] von Waldenfels W., Proof of an algebraic central limit theorem by moment generating functions, Stochastic Processes - Mathematics and Physics II, Lecture Notes in Math. 1250, Springer, Berlin (1987), 342-347.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.