×

Age-specific adjustment of graduated mortality. (English) Zbl 1390.62220

Summary: Recently, there has been an increasing interest from life insurers to assess their portfolios’ mortality risks. The new European prudential regulation, namely Solvency II, emphasized the need to use mortality and life tables that best capture and reflect the experienced mortality, and thus policyholders’ actual risk profiles, in order to adequately quantify the underlying risk. Therefore, building a mortality table based on the experience of the portfolio is highly recommended and, for this purpose, various approaches have been introduced into actuarial literature. Although such approaches succeed in capturing the main features, it remains difficult to assess the mortality when the underlying portfolio lacks sufficient exposure. In this paper, we propose graduating the mortality curve using an adaptive procedure based on the local likelihood. The latter has the ability to model the mortality patterns even in presence of complex structures and avoids relying on expert opinions. However, such a technique fails to offer a consistent yet regular structure for portfolios with limited deaths. Although the technique borrows the information from the adjacent ages, it is sometimes not sufficient to produce a robust life table. In the presence of such a bias, we propose adjusting the corresponding curve, at the age level, based on a credibility approach. This consists in reviewing the assumption of the mortality curve as new observations arrive. We derive the updating procedure and investigate its benefits of using the latter instead of a sole graduation based on real datasets. Moreover, we look at the divergences in the mortality forecasts generated by the classic credibility approaches including Hardy-Panjer, the Poisson-Gamma model and the Makeham framework on portfolios originating from various French insurance companies.

MSC:

62P05 Applications of statistics to actuarial sciences and financial mathematics
62N02 Estimation in survival analysis and censored data
62G07 Density estimation
91B30 Risk theory, insurance (MSC2010)

Software:

KernSmooth
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] Anderson, J.; Senthilselvan, A., Smooth estimates for the hazard function, Journal of the Royal Statistical Society. Series B (Methodological), 42, 322-327, (1980)
[2] Bagkavos, D.; Patil, P., Variable bandwidths for nonparametric hazard rate estimation., Communications in Statistics-Theory and Methods, 38, 1055-1078, (2009) · Zbl 1162.62092
[3] Cleveland, W. S., Robust locally weighted regression and smoothing scatterplots., Journal of the American Statistical Association, 74, 829-836, (1979) · Zbl 0423.62029
[4] Copas, J.; Haberman, S., Non-parametric graduation using kernel methods., Journal of the Institute of Actuaries, 110, 135-156, (1983)
[5] Cox, D., Regression Models and Life-Tables., Journal of the Royal Statistical Society. Series B (Methodological), 34, 187-220, (1972) · Zbl 0243.62041
[6] Currie, I. D., On fitting generalized linear and non-linear models of mortality, Scandinavian Actuarial Journal, 2016, 356-383, (2016) · Zbl 1401.91123
[7] Debón, A.; Montes, F.; Sala, R., A comparison of nonparametric methods in the graduation of mortality: Application to Data from the Valencia Region (Spain)., International statistical Review, 74, 215-233, (2006) · Zbl 1134.62369
[8] Delwarde, A.; Kachkhidze, D.; Olie, L.; Denuit, M., Modèles linéaires et additifs géneralisés, maximum de vraisemblance local et méthodes relationelles en assurance sur la vie., Bulletin Français d’Actuariat, 6, 77-102, (2004)
[9] Fan, J.; Gijbels, I., Data-driven bandwidth selection in local polynomial fitting: Variable bandwidth and spatial adaptation, Journal of the Royal Statistical Society. Series B (Methodological), 57, 371-394, (1995) · Zbl 0813.62033
[10] Fan, J.; Gijbels, I., Local Polynomial Modelling and Its Applications, (1996), London: Chapman and Hall, London · Zbl 0873.62037
[11] Felipe, A.; Guill’En, M.; Pérez-Marín, A., Recent mortality trends in the Spanish population., British Actuarial Journal, 8, 757-786, (2002)
[12] Forfar, D.; Mccutcheon, J.; Wilkie, A., On graduation by mathematical formula., Journal of the Institute of Actuaries, 115, 1-149, (1988)
[13] Forfar, D.; Mccutcheon, J.; Wilkie, A., On graduation by mathematical formula, Journal of the Institute of Actuaries, 115, 1-459, (1988)
[14] Gámiz, M. L.; Janys, L.; Miranda, M. D.M.; Nielsen, J. P., Bandwidth selection in marker dependent kernel hazard estimation., Computational Statistics & Data Analysis, 68, 155-169, (2013) · Zbl 1471.62071
[15] Gámiz, M. L.; Mammen, E.; Miranda, M. D.M.; Nielsen, J. P., Double one-sided cross-validation of local linear hazards., Journal of the Royal Statistical Society: Series B (Statistical Methodology), 78, 755-779, (2016)
[16] Gram, J., (1879)
[17] Gram, J., Ueber die Entwickelung reeller Functionen in Reihen mittelst der Methode der kleinsten Quadrate., Journal für die reine und angewandte Mathematik, 94, 41-73, (1883) · JFM 15.0321.03
[18] Gray, R. J., Some diagnostic methods for Cox regression models through hazard smoothing, Biometrics, 46, 93-102, (1990) · Zbl 0715.62078
[19] Gustafsson, J.; Nielsen, J.; Pritchard, P.; Roberts, D., Quantifying operational risk guided by kernel smoothing and continuous credibility., The ICFAI Journal of Financial Risk Management, 3, 23-47, (2006)
[20] Gustafsson, J.; Nielsen, J.; Pritchard, P.; Roberts, D., Quantifying operational risk guided by kernel smoothing and continuous credibility: A practioner’s view., Journal of Operational Risk, 1, 43-55, (2009)
[21] Hardy, M.; Panjer, H., A credibility approach to mortality risk., ASTIN Bulletin, 28, 269-283, (1998) · Zbl 1162.91415
[22] Hougaard, P., Life table methods for heterogeneous populations: Distributions describing the heterogeneity., Biometrika, 71, 75-83, (1984) · Zbl 0553.92013
[23] Jiang, J.; Doksum, K., On local polynomial estimation of hazard rates and their derivatives under random censoring., Lecture Notes-Monograph Series, 42, 463-481, (2003)
[24] Jones, M. C.; Marron, J. C.; Sheather, S. J., A brief survey of bandwidth selection for density estimation., Journal of the American Statistical Association, 91, 401-407, (1996) · Zbl 0873.62040
[25] Lejeune, M., Estimation non-paramétrique par noyaux: Régression polynomiale mobile., Revue de Statistique Appliquée, 23, 43-67, (1985) · Zbl 0569.62025
[26] Loader, C., Local Regression and Likelihood, (2006), Berlin: Springer Science & Business Media, Berlin
[27] Mammen, E.; Martínez Miranda, M. D.; Nielsen, J. P.; Sperlich, S., Do-validation for kernel density estimation., Journal of the American Statistical Association, 106, 651-660, (2011) · Zbl 05965223
[28] Nielsen, J.; Sandqvist, B., Credibility weighted hazard estimation., Astin Bulletin, 30, 405-418, (2000)
[29] Nielsen, J.; Sandqvist, B., Proportional hazard estimation adjusted by continuous credibility., ASTIN BULLETIN, 35, 239-258, (2000) · Zbl 1102.62114
[30] Nielsen, J. P.; Tanggaard, C.; Jones, M., Local linear density estimation for filtered survival data, with bias correction., Statistics, 43, 167-186, (2009) · Zbl 1291.62085
[31] Ramlau-Hansen, H., The choice of a kernel function in the graduation of counting process intensities., Scandinavian Actuarial Journal, 1983, 165-182, (1983) · Zbl 0523.62035
[32] Renshaw, A.; Haberman, S.; Hatzopoulos, P., The modelling of recent mortality trends in United Kingdom male assured lives., British Actuarial Journal, 2, 449-477, (1996)
[33] Salhi, Y.; Thérond, P. E.; Tomas, J., A credibility approach of the Makeham mortality law., European Actuarial Journal, 6, 61-96, (2016) · Zbl 1415.91163
[34] Tibshirani, R.; Hastie, T., Local likelihood estimation., Journal of the American Statistical Association, 82, 559-567, (1987) · Zbl 0626.62041
[35] Tomas, J., A local likelihood approach to univariate graduation of mortality., Bulletin Français d’Actuariat, 11, 105-153, (2011)
[36] Vaupel, J.; Manton, K. G.; Stallard, E., The impact of heterogeneity in individual frailty on the dynamics of mortality., Demography, 16, 439-454, (1979)
[37] Wand, M. P.; Jones, M. C., Kernel smoothing, (1994), Boca Raton, FL: CRC Press, Boca Raton, FL · Zbl 0854.62043
[38] Wang, W., (2001)
[39] Wang, W., Proportional hazards regression models with unknown link function and time-dependent covariates, Statistica Sinica, 14, 885-905, (2004) · Zbl 1073.62110
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.