zbMATH — the first resource for mathematics

A high-order discontinuous Galerkin solver for unsteady incompressible turbulent flows. (English) Zbl 1390.76344
Summary: In this work, we investigate the use of adaptive linearly implicit Rosenbrock-type Runge-Kutta and explicit singly diagonally implicit Runge-Kutta schemes to integrate in time high-order discontinuous Galerkin space discretizations of the incompressible Navier-Stokes (INS) and Reynolds averaged Navier-Stokes (URANS) equations. The objective of this activity is to assess the efficiency and accuracy of the considered schemes coupled with a time-step adaptation technique for incompressible URANS simulations. The schemes have been first investigated for the computation of the laminar travelling waves and of the turbulent flow around a circular cylinder at a Reynolds number \(\mathrm{Re} = 5 \times 10^4\), verifying the convergence order, a simple relation to set the system tolerance starting from the tolerance of the adaptation strategy, and their computational efficiency. Finally, the best scheme resulting from our analysis has been applied to the URANS simulation of the flow through a vertical axis wind turbine, comparing the results with CFD and experimental data available in literature.

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76F65 Direct numerical and large eddy simulation of turbulence
PDF BibTeX Cite
Full Text: DOI
[1] Hindenlang, F.; Gassner, G. J.; Altmann, C.; Beck, A.; Staudenmaier, M.; Munz, C.-D., Explicit discontinuous Galerkin methods for unsteady problems, Comput Fluids, 61, 86-93, (2012) · Zbl 1365.76117
[2] Bassi, F.; Botti, L.; Colombo, A.; Crivellini, A.; Ghidoni, A.; Nigro, A., Time integration in the discontinuous Galerkin code MIGALE - unsteady problems, (Kroll, N.; Hirsch, C.; Bassi, F.; Johnston, C.; Hillewaert, K., IDIHOM: Industrialization of High-Order Methods - a top-down approach, Notes on numerical fluid mechanics and multidisciplinary design, vol. 128, (2015), Springer International Publishing), 205-230
[3] Uranga, A.; Persson, P.-O.; Drela, M.; Peraire, J., Implicit large eddy simulation of transition to turbulence at low Reynolds numbers using a discontinuous Galerkin method, Int J Numer Methods Eng, 87, 1-5, 232-261, (2011) · Zbl 1242.76085
[4] Carton de Wiart, C.; Hillewaert, K.; Duponcheel, M.; Winckelmans, G., Assessment of a discontinuous Galerkin method for the simulation of vortical flows at high Reynolds number, Int J Numer Methods Fluids, 74, 7, 469-493, (2014)
[5] Wei, L.; Pollard, A., Direct numerical simulation of compressible turbulent channel flows using the discontinuous Galerkin method, Comput Fluids, 47, 1, 85-100, (2011) · Zbl 1271.76142
[6] Chapelier, J.-B.; de la Llave Plata, M.; Renac, F.; Lamballais, E., Evaluation of a high-order discontinuous Galerkin method for the DNS of turbulent flows, Comput Fluids, 95, 210-226, (2014) · Zbl 1391.76209
[7] Bassi, F.; Botti, L.; Colombo, A.; Crivellini, A.; Ghidoni, A.; Massa, F., On the development of an implicit high-order discontinuous Galerkin method for DNS and implicit LES of turbulent flows, Eur J Mech B: Fluids, (2015) · Zbl 1408.76360
[8] Guermond, J.; Minev, P.; Shen, J., An overview of projection methods for incompressible flows, Comput Methods Appl Mech Eng, 195, 4447, 6011-6045, (2006) · Zbl 1122.76072
[9] Botti, L.; Pietro, D. A.D., A pressure-correction scheme for convection-dominated incompressible flows with discontinuous velocity and continuous pressure, J Comput Phys, 230, 3, 572-585, (2011) · Zbl 1283.76030
[10] Ferrer, E.; Moxey, D.; Willden, R. H.J.; Sherwin, S. J., Stability of projection methods for incompressible flows using high order pressure-velocity pairs of same degree: continuous and discontinuous Galerkin formulations, Commun Comput Phys, 16, 817-840, (2014)
[11] Bassi, F.; Crivellini, A.; Di Pietro, D.; Rebay, S., An implicit high-order discontinuous Galerkin method for steady and unsteady incompressible flows, Comput Fluids, 36, 10, 1529-1546, (2007) · Zbl 1194.76102
[12] Curtiss, C. F.; Hirschfelder, J. O., Integration of stiff equation, Proc Natl Acad Sci USA, 38, 3, 235-243, (1952) · Zbl 0046.13602
[13] Bassi, F.; Colombo, A.; De Bartolo, C.; Franchina, N.; Ghidoni, A.; Nigro, A., Investigation of high-order temporal schemes for the discontinuous Galerkin solution of the Navier-Stokes equations, Proceedings of the 11th world congress on computational mechanics, WCCM 2014, 5th European conference on computational mechanics, ECCM 2014 and 6th European conference on computational fluid dynamics, ECFD 2014, 5651-5662, (2014)
[14] Cash, J. R., The integration of stiff initial value problems in ODEs using modified extended backward differentiation formulae, Comput Math Appl, 5, 9, 645-657, (1983) · Zbl 0526.65052
[15] Nigro, A.; Ghidoni, A.; Rebay, S.; Bassi, F., Modified extended BDF scheme for the discontinuous Galerkin solution of unsteady compressible flows, Int J Numer Methods Fluids, 76, 9, 549-574, (2014)
[16] Psihoyios, G.-Y.; Cash, J., A stability result for general linear methods with characteristic function having real poles only, BIT Numer Math, 38, 3, 612-617, (1998) · Zbl 0915.65095
[17] Nigro, A.; De Bartolo, C.; Bassi, F.; Ghidoni, A., Up to sixth-order accurate A-stable implicit schemes applied to the discontinuous Galerkin discretized Navier-Stokes equations, J Comput Phys, 276, 0, 136-162, (2014) · Zbl 1349.76247
[18] Bassi, F.; Botti, L.; Colombo, A.; Ghidoni, A.; Massa, F., Linearly implicit rosenbrock-type Runge-Kutta schemes applied to the discontinuous Galerkin solution of compressible and incompressible unsteady flows, Comput Fluids, 118, 305-320, (2015) · Zbl 1390.76833
[19] Bassi, F.; Ghidoni, A.; Perbellini, A.; Rebay, S.; Crivellini, A.; Franchina, N., A high-order discontinuous Galerkin solver for the incompressible RANS and k-ω turbulence model equations, Comput Fluids, 98, 54-68, (2014) · Zbl 1391.76301
[20] Carpenter, M. H.; Kennedy, C. A.; Bijl, H.; Viken, S. A.; Vatsa, V. N., Fourth-order Runge-Kutta schemes for fluid mechanics applications, J Sci Comput, 25, 157-194, (2005) · Zbl 1203.76112
[21] Lang, J.; Teleaga, D., Towards a fully space-time adaptive FEM for magnetoquasistatics, IEEE Trans Magnet, 44, 6, 1238-1241, (2008)
[22] Steinebach, F., Order reduction of ROW methods for DAEs and method of lines applications, (1995), Techn Hochsch, Fachbereich Mathematik
[23] Bassi, F.; Botti, L.; Colombo, A.; Di Pietro, D.; Tesini, P., On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations, J Comput Phys, 231, 1, 45-65, (2012) · Zbl 1457.65178
[24] Bassi, F.; Botti, L.; Colombo, A.; Ghidoni, A.; Rebay, S., Discontinuous Galerkin for turbulent flows, (Wang, Z. J., Adaptive high-order methods in computational fluid dynamics, Advances in computational fluid dynamics, vol. 2, (2011), World Scientific), 1-32 · Zbl 1358.76036
[25] Bassi, F.; Crivellini, A.; Pietro, D. A.D.; Rebay, S., An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations, J Comput Phys, 218, 2, 794-815, (2006) · Zbl 1158.76313
[26] Bassi, F.; Rebay, S.; Mariotti, G.; Pedinotti, S.; Savini, M., A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, (Decuypere, R.; Dibelius, G., Proceedings of the 2nd European conference on turbomachinery fluid dynamics and thermodynamics, (1997), Technologisch Instituut Antwerpen, Belgium), 99-108
[27] Brezzi, F.; Manzini, M.; Marini, D.; Pietra, P.; Russo, A., Discontinuous Galerkin approximations for elliptic problems, Numer Methods Partial Differ Equ, 16, 365-378, (2000) · Zbl 0957.65099
[28] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J Numer Anal, 39, 5, 1749-1779, (2002) · Zbl 1008.65080
[29] Kanevsky, A.; Carpenter, M. H.; Gottlieb, D.; Hesthaven, J. S., Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes, J Comput Phys, 225, 2, 1753-1781, (2007) · Zbl 1123.65097
[30] Balay, S.; Abhyankar, S.; Adams, M. F.; Brown, J.; Brune, P.; Buschelman, K., Petsc users manual, Technical report ANL-95/11 - Revision 3.6, (2015), Argonne National Laboratory
[31] Hairer, E.; Wanner, G., Solving ordinary differential equations II, Springer series in computational mathematics, (1996), Springer · Zbl 0859.65067
[32] Carpenter, M. H.; Gottlieb, D.; Abarbanel, S.; Don, W.-S., The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem: a study of the boundary error, SIAM J Sci Comput, 16, 6, 1241-1252, (1995) · Zbl 0839.65098
[33] Lang, J.; Verwer, J., ROS3P-an accurate third-order rosenbrock solver designed for parabolic problems, BIT Numer Math, 41, 4, 731-738, (2001) · Zbl 0996.65099
[34] Rang, J., A new stiffly accurate rosenbrock-wanner method for solving the incompressible Navier-Stokes equations, (Ansorge, R.; Bijl, H.; Meister, A.; Sonar, T., Recent developments in the numerics of nonlinear hyperbolic conservation laws, Notes on numerical fluid mechanics and multidisciplinary design, vol. 120, (2013), Springer Berlin, Heidelberg), 301-315 · Zbl 1382.65286
[35] Söderlind, G., Digital filters in adaptive time-stepping, ACM Trans Math Softw, 29, 1, 1-26, (2003) · Zbl 1097.93516
[36] Söderlind, G., Adaptive time-stepping and computational stability, J Comput Appl Math, 185, 2, 225-243, (2006) · Zbl 1077.65086
[37] Beck, A. D.; Bolemann, T.; Flad, D.; Frank, H.; Gassner, G. J.; Hindenlang, F., High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations, Int J Numer Methods Fluids, 76, 8, 522-548, (2014)
[38] Ferrer, E.; Willden, R. H., A high order discontinuous Galerkin-Fourier incompressible 3D Navier-Stokes solver with rotating sliding meshes, J Comput Phys, 231, 21, 7037-7056, (2012) · Zbl 1284.35311
[39] Ferrer, E.; Willden, R. H., Bladewake interactions in cross-flow turbines, Int J Mar Energy, 11, 71-83, (2015)
[40] Montlaur, A.; Giorgiani, G., Numerical study of 2D vertical axis wind and tidal turbines with a degree-adaptive hybridizable discontinuous Galerkin method, CFD for wind and tidal offshore turbines, 13-26, (2015), Springer International Publishing
[41] Kanner, S.; Persson, P.-O., Validation of a high-order large-eddy simulation solver using a vertical-axis wind turbine, AIAA J, 1-12, (2015)
[42] Ghidoni, A.; Pelizzari, E.; Rebay, S.; Selmin, V., 3D anisotropic unstructured grid generation, Int J Numer Methods Fluids, 51, 9-10, 1097-1115, (2006) · Zbl 1103.76054
[43] C., S.; D., V., Integrated performance analysis of computer systems (IPACS). benchmarks for distributed computer systems, Prax Informationsverarb Kommun, 28, 3, 150-159, (2005)
[44] Carpenter, M.; Viken, S.; Nielsen, E., The efficiency of high order temporal schemes, Proceedings of the 41st aerospace sciences meeting and exhibit, (2003)
[45] Castelli, M. R.; Englaro, A.; Benini, E., The darrieus wind turbine: proposal for a new performance prediction model based on CFD, Energy, 36, 8, 4919-4934, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.