×

zbMATH — the first resource for mathematics

Reduced dissipation AUSM-family fluxes: HR-SLAU2 and HR-AUSM\(^{+}\)-up for high resolution unsteady flow simulations. (English) Zbl 1390.76459

MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76Nxx Compressible fluids and gas dynamics
Software:
FaSTAR; AUSM
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Liou, M.-S., “Open problems in numerical fluxes: proposed resolutions,” AIAA Paper 2011-3055, 2011.
[2] Pandolfi, M.; D’Ambrosio, D., Numerical instabilities in upwind methods: analysis and cures for the “carbuncle” phenomenon, J Comput Phys, 166, 2, 271-301, (2001) · Zbl 0990.76051
[3] Kitamura, K.; Roe, P.; Ismail, F., Evaluation of Euler fluxes for hypersonic flow computations, AIAA J, 47, 44-53, (2009)
[4] Weiss, J. M.; Smith, W. A., Preconditioning applied to variable and constant density flows, AIAA J, 33, 11, 2050-2057, (1995) · Zbl 0849.76072
[5] Kitamura, K.; Shima, E.; Fujimoto, K.; Wang, Z. J., Performance of low-dissipation Euler fluxes and preconditioned LU-SGS at low speeds, Commun Comput Phys, 10, 1, 90-119, (2011) · Zbl 1364.76115
[6] Hosangadi, A.; Sachdev, J.; Sankaran, V., Improved flux formulations for unsteady low Mach number flows, ICCFD7-2202, (Proceedings of seventh international conference on computational fluid dynamics (ICCFD7), Big Island, Hawaii, July 9-13, (2012))
[7] Moguen, Y.; Dick, E.; Vierendeels, J.; Bruel, P., Pressure-velocity coupling for unsteady low Mach number flow simulations: an improvement of the AUSM^{+}-up scheme, J Comput Appl Math, 246, 136-143, (2013) · Zbl 1426.76405
[8] Shima, E., “On the improvement of the all-speed flux scheme for very low Mach number flows,” AIAA 2013-2696, 2013.
[9] Mavriplis, D. J.; Vassberg, J. C.; Tinoco, E. N.; Mani, M.; Brodersen, O. P.; Eisfeld, B.; Wahls, R. A.; Morrison, J. H.; Zickuhr, T.; Levy, D.; Murayama, M., Grid quality and resolution issues from the drag prediction workshop series, J Aircr, 46, 3, 935-950, (2009)
[10] Diskin, B. and Nishikawa, H., “Evaluation of multigrid solutions for turbulent flows,” AIAA 2014-0082, 2014.
[11] Langer, S., Schwöppe, A., and Kroll, N., “The DLR flow solver TAU - status and recent algorithmic developments,” AIAA 2014-0080, 2014.
[12] Rumsey, C.L., “Turbulence modeling verification and validation (Invited),” AIAA 2014-0201, 2014.
[13] Spalart, P. R., Detached-eddy simulation, Annu Rev Fluid Mech, 41, 181-202, (2009) · Zbl 1159.76036
[14] Saurel, R.; Abgrall, R., A multiphase Godunov method for compressible multifluid and multiphase flows, J Comput Phys, 150, 425-467, (1999) · Zbl 0937.76053
[15] Chang, C.-H.; Liou, M.-S, A robust and accurate approach to computing compressible multiphase flow: stratified flow model and AUSM^{+}-up scheme, J Comput Phys, 225, 840-873, (2007) · Zbl 1192.76030
[16] Liou, M.-S.; Chang, C.-H.; Nguyen, L.; Theofanous, T. G., How to solve compressible multifluid equations: a simple, robust, and accurate method, AIAA J, 46, 2345-2356, (2008)
[17] Brunet, V. and Deck, S., “Zonal-detached eddy simulation of transonic buffet on a civil aircraft type configuration,” In: Proceedings of 38th fluid dynamics conference and exhibit, AIAA 2008-4152, Seattle, Washington, 23-26 June 2008.
[18] Deck, S., Zonal-detached eddy simulation of the flow around a high-lift configuration, AIAA J, 43, 11, 2372-2384, (2005)
[19] Winkler, C.M., Dorgany, A.J. and Mani, M., “A reduced dissipation approach for unsteady flows on unstructured grids.” AIAA 2012-0570, 2012.
[20] Tajallipour, N.; Owlam, B. B.; Paraschivoiu, M., Self-adaptive upwinding for large eddy simulation of turbulent flows on unstructured elements, J Aircr, 46, 3, 915-926, (2009)
[21] Camarri, S.; Salvetti, M. V.; Koobus, B.; Dervieux, A., Large-eddy simulation of a blunt-body flow on unstructured grids, Int J Numer Methods Fluids, 40, 1431-1460, (2002) · Zbl 1025.76014
[22] Camarri, S.; Salvetti, M. V.; Koobus, B.; Dervieux, A., A low-diffusion MUSCL scheme for LES on unstructured grids, Comput Fluids, 33, 1101-1129, (2004) · Zbl 1085.76027
[23] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J Comput Phys, 43, 357-372, (1981) · Zbl 0474.65066
[24] Mavriplis, D.J., “Revisiting the least-squares procedure for gradient reconstruction on unstructured meshes,” AIAA Paper 2003-3986, 2003.
[25] Luo, H.; Spiegel, S.; Lohner, R., Hybrid grid generation method for complex geometries, AIAA J, 48, 2639-2647, (2010)
[26] Hashimoto, A., Murakami, K., Aoyama, T., Ishiko, K., Hishida, M., Sakashita, M., and Lahur, P., “Toward the fastest unstructured CFD code ‘FaSTAR’,” AIAA-2012-1075, 2012.
[27] Kitamura, K.; Fujimoto, K.; Shima, E.; Kuzuu, K.; Wang, Z. J., Validation of an arbitrary unstructured CFD code for aerodynamic analyses, Trans JSASS, 53, 182, 311-319, (2011)
[28] Caraeni, M.; West, A.; Caraeni, D., Turbulent jet noise simulation and propagation using a 3rd order MUSCL/CD scheme on unstructured grid and ffowcs-Williams hawkings, (Proceedings of international conference on jets, wakes and separated flows, KTH Royal Institute of Technology, Stockholm, Sweden, 16-18 June, (2015))
[29] Hu, X. Y.; Wang, Q.; Adams, N. A., An adaptive central-upwind weighted essentially non-oscillatory scheme, J Comput Phys, 229, 8952-8965, (2007) · Zbl 1204.65103
[30] Shur, M. L.; Spalart, P. R.; Strelets, M. Kh; Travin, A. K., Towards the prediction of noise from jet engines, Int J Heat Fluid Flow, 24, 551-561, (2003)
[31] Xia, H.; Tucker, P. G.; Eastwood, S., Large-eddy simulations of chevron jet flows with noise predictions, Int J Heat Fluid Flow, 30, 1067-1079, (2009)
[32] Shima, E.; Kitamura, K., Parameter-free simple low-dissipation AUSM-family scheme for all speeds, AIAA J, 49, 8, 1693-1709, (2011)
[33] Kitamura, K.; Shima, E., Towards shock-stable and accurate hypersonic heating computations: a new pressure flux for AUSM-family schemes, J Comput Phys, 245, 62-83, (2013) · Zbl 1349.76487
[34] Liou, M.-S., A sequel to AUSM, part II: AUSM^{+}-up for all speeds, J Comput Phys, 214, 137-170, (2006) · Zbl 1137.76344
[35] Paillère, H.; Corre, C.; Cascales, J. R.G., On the extension of the AUSM^{+} scheme to compressible two-fluid models, Comput. Fluids, 32, 891-916, (2003) · Zbl 1040.76044
[36] Kitamura, K.; Liou, M.-S.; Chang, C.-H., Extension and comparative study of AUSM-family schemes for compressible multiphase flow simulations, Commun Comput Phys, 16, 632-674, (2014) · Zbl 1373.76134
[37] Nonomura, T.; Kitamura, K.; Fujii, K., A simple interface sharpening technique with a hyperbolic tangent function applied to compressible two-fluid modeling, J Comput Phys, 258, 95-117, (2014) · Zbl 1349.76514
[38] Agarwal, R., Augustinus, J., and Halt D., “A comparative study of advection upwind split (AUSM) and wave/particle split (WPS) scheme for fluid and MHD flows,” AIAA 99-3613 (1999).
[39] Xisto, C. M.; Páscoa1, J. C.; Oliveira, P. J., A pressure-based high resolution numerical method for resistive MHD, J Comput Phys, 275, 323-345, (2014) · Zbl 1349.76914
[40] Narechania, N. M.; Kitamura, K., A higher order flux for magnetohydrodynamics, (Proceedings of the 6th European conference on computational fluid dynamics (ECFD VI), Barcelona, Spain, (2014))
[41] Jiang, G.-S.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J Comput Phys, 126, 202-228, (1996) · Zbl 0877.65065
[42] Hu, C.; Shu, C. W., Weighted essentially non-oscillatory schemes on triangular meshes, J Comput Phys, 150, 97-127, (1999) · Zbl 0926.65090
[43] Dumbser, M.; Balsara, D.; Toro, E. F.; Munz, C. D., A unified framework for the construction of one-step finite-volume and discontinuous Galerkin schemes on unstructured meshes, J Comput Phys, 227, 8209-8253, (2008) · Zbl 1147.65075
[44] Gnoffo, P., Buck, G., Moss, J., Nielsen, E., Berger, K., Jones, W.T. and Rubavsky, R., “Aerothermodynamic analyses of towed ballutes,” AIAA Paper 2006-3771, 2006.
[45] Pandya, S., Onufer, J., Chan, W., and Klopfer, G., “Capsule abort recontact simulation,” NAS Technical Report, NAS-06-005, 2006.
[46] Catalano, P.; Marini, M.; Nicoli, A.; Pizzicaroli, A., CFD contribution to the aerodynamic data set of the vega launcher, J Spacecr Rockets, 44, 42-51, (2007)
[47] Kitamura, K.; Nonaka, S.; Kuzuu, K.; Aono, J.; Fujimoto, K.; Shima, E., Numerical and experimental investigations of epsilon launch vehicle aerodynamics at Mach 1.5, J Spacecr Rockets, 50, 4, 896-916, (2013)
[48] Jameson, A., The construction of discretely conservative finite volume schemes that also globally conserve energy or entropy, J Sci Comput, 34, 152-187, (2008) · Zbl 1133.76030
[49] Jameson, A., Formulation of kinetic energy preserving conservative schemes for gas dynamics and direct numerical simulation of one-dimensional viscous compressible flow in a shock tube using entropy and kinetic energy preserving schemes, J Sci Comput, 34, 188-208, (2008) · Zbl 1133.76031
[50] Mohamed, K.; Nadarajah, S.; Paraschivoiu, M., Detached-eddy simulation of a wing tip vortex at dynamic stall conditions, J Aircr, 46, 4, 1302-1313, (2009)
[51] Kitamura, K.; Shima, E., Simple and parameter-free second slope limiter for unstructured grid aerodynamic simulations, AIAA J, 50, 6, 1415-1426, (2012)
[52] Hori, D., Shimizu, T., Kitamura, K., Kuzuu, K., and Oyama, A., “Slit resonator damping estimation and proposal of a new geometry,” AIAA Paper 2012-2095, 2012.
[53] Liou, M. S., A sequel to AUSM: AUSM+, J Comput Phys, 129, 2, 364-382, (1996) · Zbl 0870.76049
[54] Liou, M.S., and Edwards, J.R., “Numerical speed of sound and its application to schemes for all speeds,” AIAA Paper 99-3268-CP, 1989.
[55] Shima, E.; Kitamura, K.; Haga, T., Green-Gauss/weighted-least-squares hybrid gradient reconstruction for arbitrary polyhedra unstructured grids, AIAA J, 51, 11, 2740-2747, (2013)
[56] Shima, E.; Kitamura, K., Multidimensional numerical noise from captured shockwave and its cure, AIAA J, 51, 4, 992-998, (2013)
[57] Van Leer, B., Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, J Comput Phys, 32, 101-136, (1979) · Zbl 1364.65223
[58] Weinan, E.; Shu, C. W., A numerical resolution study of high order essentially non-oscillatory schemes applied to incompressible flow, J Comput Phys, 110, 39-46, (1994) · Zbl 0790.76055
[59] Ishiko, K., Ohnishi, N., and Sawada, K., “Implicit LES for two-dimensional turbulence using shock capturing monotone scheme,” AIAA 2006-703, 2006.
[60] Matsuyama, S., Performance of all-speed AUSM-family schemes for DNS of low Mach number turbulent channel flow, Comput Fluids, 91, 130-143, (2014) · Zbl 1391.76235
[61] Wada, Y.; Liou, M.-S., An accurate and robust flux splitting scheme for shock and contact discontinuities, SIAM J Sci Comput, 18, 3, 633-657, (1997) · Zbl 0879.76064
[62] Comte-Bellot, G.; Corrsin, S., Simple Eulerian time correlation of full- and narrow-band velocity signal in grid-generated ‘isotropic’ turbulence, J Fluid Mech, 48, 273-337, (1971)
[63] Rogallo, R. S., “Numerical experiments in homogeneous turbulence,” NASA-TM-81315, 1981.
[64] Smagorinsky, J., General circulation experiments with the primitive equations, Mon Weather Rev, 91, 99-164, (1963)
[65] Daru, V.; Tenaud, C., Evaluation of TVD high-resolution schemes for unsteady viscous shocked flows, Comput Fluids, 30, 89-113, (2001) · Zbl 0994.76070
[66] Roe, P. L., Characteristic-based schemes for the Euler equations, Ann Rev Fluid Mech, 18, 337-365, (1986) · Zbl 0624.76093
[67] Park, J. S.; Yoon, S. H.; Kim, C., Multi-dimensional limiting process for hyperbolic conservation laws on unstructured grids, J Comput Phys, 229, 788-812, (2010) · Zbl 1185.65150
[68] Edwards, J.R., “Towards unified CFD simulation of real fluid flows,” AIAA 2001-2524, 2001.
[69] Singh, R. and Holmes, G., “Evaluation of an artificial dissipation and AUSM based flux formulation: AD-AUSM,” AIAA 2012-3069, 2012.
[70] Michalak, C.; Ollivier-Gooch, C., Accuracy preserving limiter for the high-order accurate solution of the Euler equations, J Comput Phys, 228, 8693-8711, (2009) · Zbl 1287.76171
[71] Liu, Y., and Vinokur, M., “Upwind algorithms for general thermo-chemical nonequilibrium flows,” AIAA Paper 89-0201, 1989.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.