×

Determination of desired geometry by a novel extension of ball spine algorithm inverse method to conjugate heat transfer problems. (English) Zbl 1390.80011

Summary: In the present study, numerical solution of an inverse conjugate heat transfer problem including conduction and forced convection is carried out via the ball spine algorithm (BSA). The BSA inverse method is originally developed for inverse shape design of pure fluid flow problems with a desired pressure distribution along an unknown surface but in this paper it is shown how proposing a novel remedy enables the BSA method of solving inverse heat transfer problems as well. The proposed method has a truly low computational cost accompanied by high convergence rate. The inverse problem is defined as heat source surrounded by a solid medium exposed to free stream in external flow. Heat is generated by a heat source and spreads all over the medium by conduction and then is transferred to free stream by forced convection. The objective is finding a configuration for the solid body to satisfy a prescribed uniform temperature along its surface. Solution of the mentioned inverse problem is dependent on different combinations of the dominant parameters including Reynolds number (Re), thermal conductivity ratio (\(k_{f}/k_{s}\)), desired outer surface temperature (\(\theta_{s}\)) and also Prandtl number (Pr).

MSC:

80A23 Inverse problems in thermodynamics and heat transfer
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Stanitz, J. D., A review of certain inverse methods for the design of ducts with 2 or 3-dimensional potential flow, Appl Mech Rev, 41, 217-238, (1988), http://appliedmechanicsreviews.asmedigitalcollection.asme.org/mobile/article.aspx?articleID=1394074
[2] Nelson, C. D.; Yang, T., Design of branched and unbranched axially symmetrical ducts with specified pressure distribution, AIAA J, 15, 1272-1277, (1977), http://arc.aiaa.org/doi/abs/10.2514/3.60784
[3] Chaviaropoulos, P.; Dedoussis, V.; Papailion, K. D., On the 3-D inverse potential target pressure problem. part I: theoretical aspects and method formulation, J Fluid Mech, 282, 131-146, (1995), http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=353015&fulltextType=RA&fileId=S0022112095000061 · Zbl 0840.76080
[4] Chaviaropoulos, P.; Dedoussis, V.; Papailion, K. D., On the 3-D inverse potential target pressure problem. part II: numerical aspects and application to duct design, J Fluid Mech, 282, 147-162, (1995), http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=353018&fulltextType=RA&fileId=S0022112095000073 · Zbl 0840.76080
[5] Zannetti, L., A natural formulation for the solution of two-dimensional or axis-symmetric inverse problems, Int J Numer Methods Eng, 22, 451-463, (1986), http://onlinelibrary.wiley.com/doi/10.1002/nme.1620220211/abstract · Zbl 0597.76110
[6] Ashrafizadeh, A.; Raithby, G. D.; Stubley, G. D, Direct design of shape, Numer Heat Transfer Part B, 41, 501-520, (2002), http://www.tandfonline.com/doi/abs/10.1080/10407790190053752
[7] Taiebi-Rahni, M.; Ghadak, F.; Ashrafizadeh, A., A direct design approach using the Euler equation, Inverse Prob Sci Eng, 16, 217-231, (2008), http://www.tandfonline.com/doi/full/10.1080/17415970701404268#abstract · Zbl 1258.76131
[8] Borges, J. E., Computational method for the design of ducts, Comput Fluids, 36, 480-483, (2007), http://www.sciencedirect.com/science/article/pii/S0045793006000193 · Zbl 1177.76253
[9] Gosselin, L.; Tye-Gingras, M.; Mathieu-Potvin, F., Review of utilization of genetic algorithms in heat transfer problems, Int J Heat Mass Transfer, 52, 2169-2188, (2009), http://www.sciencedirect.com/science/article/pii/S0017931008006534 · Zbl 1158.80306
[10] Huang, C. H.; Wang, S. P., A three-dimensional inverse heat conduction problem in estimating surface heat flux by conjugate gradient method, Int J Heat Mass Transfer, 42, 3387-3403, (1999), http://www.sciencedirect.com/science/article/pii/S0017931099000204 · Zbl 0977.74594
[11] Luc, S.; Heng, Y.; Mhamdi, A, A robust and fast algorithm for three-dimensional transient inverse heat conduction problems, Int J Heat Mass Transfer, 55, 7856-7872, (2012), http://www.sciencedirect.com/science/article/pii/S0017931012006394
[12] Hematiyan, M. R.; Khosravifard, A.; Shiahb, Y. C., A novel inverse method for identification of 3D thermal conductivity coefficients of anisotropic media by the boundary element analysis, Int J Heat Mass Transfer, 89, 685-693, (2015), http://www.sciencedirect.com/science/article/pii/S0017931015005177
[13] Zhou, J.; Zhang, Y.; Chen, J. K.; Feng, Z. C., Inverse estimation of surface heating condition in a three-dimensional object using conjugate gradient method, Int J Heat Mass Transfer, 53, 2643-2654, (2010), http://www.sciencedirect.com/science/article/pii/S0017931010001249 · Zbl 1191.80040
[14] Cheng, C. H.; Chang, M. H., Shape design for a cylinder with uniform temperature distribution on the outer surface by inverse heat transfer method, Int J Heat Mass Transfer, 46, 2643-2654, (2003), http://www.sciencedirect.com/science/article/pii/S0017931002002260
[15] Huang, C. H.; Chen, W. C., A three-dimensional inverse forced convection problem in estimating surface heat flux by conjugate gradient method, Int J Heat Mass Transfer, 43, 3171-3181, (2000), http://www.sciencedirect.com/science/article/pii/S0017931099003300 · Zbl 1094.76566
[16] Park, H. M.; Chung, O. Y., An inverse natural convection problem of estimating the strength of a heat source, Int J Heat Mass Transfer, 42, 4259-4273, (1999), http://www.sciencedirect.com/science/article/pii/S0017931099001003 · Zbl 0986.76084
[17] Prud’homme, M.; Hung Nguyen, T., Solution of inverse free convection problems by conjugate gradient method: effects of Rayleigh number, Int J Heat Mass Transfer, 44, 2011-2027, (2001), http://www.sciencedirect.com/science/article/pii/S0017931000002660 · Zbl 1011.76078
[18] Park, H. M.; Yoon, T. Y., Solution of the inverse radiation problem using a conjugate gradient method, Int J Heat Mass Transfer, 43, 1767-1776, (2000), http://www.sciencedirect.com/science/article/pii/S0017931099002550 · Zbl 0964.80010
[19] Liu, L. H.; Tan, H. P.; Yu, Q. Z., Inverse radiation problem of sources and emissivities in one-dimensional semitransparent media, Int J Heat Mass Transfer, 44, 63-72, (2001), http://www.sciencedirect.com/science/article/pii/S0017931000000818?np=y · Zbl 0979.80007
[20] Demeulenaere, A.; Van den Braembussche, R., Three-dimensional inverse method for turbomachinery blading design, ASME J Turbomach, 120, 247-255, (1998), http://turbomachinery.asmedigitalcollection.asme.org/article.aspx?articleid=1465412
[21] De Vito, L.; Van den Braembussche, R. A.; Deconinck, H., A novel two-dimensional viscous inverse design method for turbomachinery blading, ASME J Turbomach, 125, 310-316, (2003), http://turbomachinery.asmedigitalcollection.asme.org/article.aspx?articleid=1466580
[22] Barger R.L., Brooks C.W. A streamline curvature method for design of supercritical and subcritical airfoils. NASA technical note D-7770, 1974. http://ntrs.nasa.gov/search.jsp?R=19740024303; Barger R.L., Brooks C.W. A streamline curvature method for design of supercritical and subcritical airfoils. NASA technical note D-7770, 1974. http://ntrs.nasa.gov/search.jsp?R=19740024303
[23] Garabedian, P.; McFadden, G., Design of supercritical swept wings, AIAA J, 20, 289-291, (1982), http://arc.aiaa.org/doi/abs/10.2514/3.7912 · Zbl 0479.76075
[24] Malone, J.; Vadyak, J.; Sankar, L. N., Inverse aerodynamic design method for aircraft components, J Aircraft, 24, 8-9, (1986), http://arc.aiaa.org/doi/abs/10.2514/3.45403
[25] Campbell R.L., Smith L.A., Sankar L.N. A hybrid algorithm for transonic airfoil and wing design. AIAA Paper 1987; No. 87-2552. http://arc.aiaa.org/doi/abs/10.2514/6.1987-2552; Campbell R.L., Smith L.A., Sankar L.N. A hybrid algorithm for transonic airfoil and wing design. AIAA Paper 1987; No. 87-2552. http://arc.aiaa.org/doi/abs/10.2514/6.1987-2552
[26] Bell, R. A.; Cedar, R. D., An inverse method for the aerodynamic design of three-dimensional air-craft engine nacelles, (Dulikravich, G. S., Proceedings of the third international conference on inverse design concepts and optimization in engineering sciences, ICIDES-III, Washington, DC, (1991 October 23-25)), 405-417, http://ntrs.nasa.gov/search.jsp?R=19920004740
[27] Malone, J. B.; Narramore, J. C.; Sankar, L. N., Airfoil design method using the Navier-Stokes equations, J Aircraft, 28, 216-224, (1991), http://arc.aiaa.org/doi/abs/10.2514/3.46015?journalCode=ja
[28] Dulikravich G.S., Baker D.P., Aerodynamic shape inverse design using a Fourier series method, AIAA paper no. 99-0185, 1999. http://arc.aiaa.org/doi/abs/10.2514/6.1999-185; Dulikravich G.S., Baker D.P., Aerodynamic shape inverse design using a Fourier series method, AIAA paper no. 99-0185, 1999. http://arc.aiaa.org/doi/abs/10.2514/6.1999-185
[29] Dulikravich, G. S.; Baker, D. P., Fourier series solution for inverse design of aerodynamic shapes, Inverse problems in engineering mechanics, 427-436, (1998), http://www.sciencedirect.com/science/article/pii/B9780080433196500492
[30] Nikfar, M.; Ashrafizadeh, A.; Mayeli, P., Inverse shape design via a new physical-based iterative solution strategy, Inverse Prob Sci Eng, 23, 1138-1162, (2015), http://www.tandfonline.com/doi/abs/10.1080/17415977.2014.973873 · Zbl 1326.65152
[31] Safari, M.; Nili-Ahmadabadi, M.; Ghaei, A.; Shirani, E., Inverse design in subsonic and transonic external flow regimes using elastic surface algorithm, Comput Fluids, 102, 41-51, (2014), http://www.sciencedirect.com/science/article/pii/S0045793014002448 · Zbl 1391.76272
[32] Nili-Ahmadabadi, M.; Durali, M.; Hajilouy, A.; Ghadak, F., Inverse design of 2D subsonic ducts using flexible string algorithm, Inverse Prob Sci Eng, 17, 1037-1057, (2009), http://www.tandfonline.com/doi/full/10.1080/17415970903047451 · Zbl 1396.76069
[33] Nili-Ahmadabadi, M.; Hajilouy, A.; Ghadak, F.; Durali, M., A novel 2-D incompressible viscous inverse design method for internal flows using flexible string algorithm, J Fluids Eng, 132: 031401, 1-10, (2010), http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1433423
[34] Nili-Ahmadabadi, M.; Ghadak, F.; Mohammadi, M., Subsonic and transonic airfoil inverse design via ball-spine algorithm, Comput Fluids, 84, 87-96, (2013), http://www.sciencedirect.com/science/article/pii/S004579301300193X
[35] Nili-Ahmadabadi, M.; Poursadegh, F., Centrifugal compressor shape modification using a proposed inverse design method, J Mech Sci Technol, 27, 713-720, (2013), http://link.springer.com/article/10.1007
[36] Vaghefi, N. S.; Nili-Ahmadabadi, M.; Roshani, M. R., Optimal design of axe-symmetric diffuser via genetic algorithm and ball-spine inverse design method, (ASME proceedings|micro- and nano-systems engineering and packaging, 9, (2012)), 893-902, http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1751824
[37] Madadi, A.; Kermani, M. J.; Nili-Ahmadabadi, M., Application of an inverse design method to meet a target pressure in axial-flow compressors, (ASME proceedings|turbomachinery, 7, (2011)), 1315-1322, http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1633963&resultClick=1
[38] Madadi, A.; Kermani, M. J.; Nili-Ahmadabadi, M., Application of the ball-spine algorithm to design axial-flow compressor blade, Sci Iranica, 21, 1981-1992, (2014), http://www.scientiairanica.com/en/ManuscriptDetail?mid=300
[39] Madadi, A.; Kermani, M. J.; Nili-Ahmadabadi, M., Applying the ball-spine algorithm to the design of blunt leading edge airfoils for axial flow compressors, J Mech Sci Technol, 28, 4517-4526, (2014), http://link.springer.com/article/10.1007
[40] Madadi, A.; Kermani, M. J.; Nili-Ahmadabadi, M., Aerodynamic design of S-shaped diffusers using ball-spine inverse design method, J Eng Gas Turbines Power, 136:122606-1, 8, (2014), http://gasturbinespower.asmedigitalcollection.asme.org/mobile/article.aspx?articleid=1885200
[41] Mayeli, P.; Nili-Ahmadabadi, M.; Besharati-Foumani, H., Inverse shape design for heat conduction problems via ball spine algorithm, Numer Heat Transfer Part B, 69:249, 269, (2016), http://www.tandfonline.com/doi/full/10.1080/10407790.2015.1096690
[42] Hoffmann, K. A.; Chiang, S. T., Computational fluid dynamic, 383-388, (2000), EES Kansas
[43] Schneider, G. E.; Raw, M. J., Control volume finite-element method for heat transfer and fluid flow using collocated variables- 1. computational procedure, Numer Heat Transfer Part A, 11, 363-390, (1987), http://www.tandfonline.com/doi/abs/10.1080/10407788708913560#.VP32w_mUe58 · Zbl 0631.76107
[44] Patankar, S. V.; Spalding, D. B., A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Int J Heat Mass Transfer, 15, 1787-1806, (1972), http://www.sciencedirect.com/science/article/pii/0017931072900543 · Zbl 0246.76080
[45] Rhie, C. M.; Chow, W. L., Numerical study of the turbulent flow past an airfoil with trailing edge separation, AIAA J, 21, 1525-1532, (1983), http://arc.aiaa.org/doi/abs/10.2514/6.1982-998 · Zbl 0528.76044
[46] Lima E Silva, A. L.F.; Silveira-Neto, A.; Damasceno, J. J.R., Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method, Int J Comput Phys, 189, 351-370, (2003), http://www.sciencedirect.com/science/article/pii/S0021999103002146 · Zbl 1061.76046
[47] Dennis, S. C.R.; Chang, G., Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100, J Fluid Mech, 42, 471-489, (1970), http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=383146&fulltextType=RA&fileId=S0022112070001428 · Zbl 0193.26202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.