Loop amplitudes in an extended gravity theory. (English) Zbl 1390.81663

Summary: We extend the \(S\)-matrix of gravity by the addition of the minimal three-point amplitude or equivalently adding \(R^3\) terms to the Lagrangian. We demonstrate how unitarity can be used to simply examine the renormalisability of this theory and determine the \(R^4\) counter-terms that arise at one-loop. We find that the combination of \(R^4\) terms that arise in the extended theory is complementary to the \(R^4\) counter-term associated with supersymmetric Lagrangians.


81V17 Gravitational interaction in quantum theory
81T13 Yang-Mills and other gauge theories in quantum field theory
81U20 \(S\)-matrix theory, etc. in quantum theory
Full Text: DOI arXiv


[1] ’t Hooft, G.; Veltman, M. J.G., NATO ASI Ser., Ser. B: Phys., vol. 4, 177, (1974)
[2] Eden, R. J.; Landshoff, P. V.; Olive, D. I.; Polkinghorne, J. C., The analytic S matrix, (1966), Cambridge University Press · Zbl 0139.46204
[3] Benincasa, P.; Cachazo, F.
[4] Dunbar, D. C.; Godwin, J. H.; Jehu, G. R.; Perkins, W. B., Phys. Lett. B, 771, 230, (2017)
[5] Narison, S.; Tarrach, R., Phys. Lett. B, 125, 217, (1983)
[6] Morozov, A. Y., Sov. J. Nucl. Phys., Yad. Fiz., 40, 788, (1984)
[7] Bauer, C. W.; Manohar, A. V., Phys. Rev. D, 57, 337, (1998)
[8] Gracey, J. A., Nucl. Phys. B, Nucl. Phys. B, 696, 295, (2004), (Erratum)
[9] Passarino, G.; Veltman, M., Nucl. Phys. B, 160, 151, (1979)
[10] Kunszt, Z.; Signer, A.; Trocsanyi, Z., Nucl. Phys. B, 420, 550, (1994)
[11] Weinberg, S., Phys. Rev., 140, B516, (1965)
[12] Dunbar, D. C.; Norridge, P. S., Class. Quantum Gravity, 14, 351, (1997)
[13] Broedel, J.; Dixon, L. J., J. High Energy Phys., 1210, (2012)
[14] Cohen, T.; Elvang, H.; Kiermaier, M., J. High Energy Phys., 1104, (2011)
[15] Dixon, L. J.; Shadmi, Y., Nucl. Phys. B, Nucl. Phys. B, 452, 724, (1995), (Erratum)
[16] He, S.; Zhang, Y., J. High Energy Phys., 1702, (2017)
[17] Britto, R.; Cachazo, F.; Feng, B.; Witten, E., Phys. Rev. Lett., 94, (2005)
[18] Norridge, P. S., Phys. Lett. B, 387, 701, (1996)
[19] Bern, Z.; Dixon, L. J.; Dunbar, D. C.; Kosower, D. A., Nucl. Phys. B, 425, 217, (1994)
[20] Bern, Z.; Dixon, L. J.; Dunbar, D. C.; Kosower, D. A., Nucl. Phys. B, 435, 59, (1995)
[21] van Nieuwenhuizen, P.; Wu, C. C., J. Math. Phys., 18, 182, (1977)
[22] Dunbar, D. C.; Jehu, G. R.; Perkins, W. B., Phys. Rev. D, 95, 4, (2017)
[23] Bern, Z.; Chi, H. H.; Dixon, L.; Edison, A., Phys. Rev. D, 95, 4, (2017)
[24] Dunbar, D. C.; Turner, N. W.P., Class. Quantum Gravity, 20, 2293, (2003) · Zbl 1027.83521
[25] Fulling, S. A.; King, R. C.; Wybourne, B. G.; Cummins, C. J., Class. Quantum Gravity, 9, 1151, (1992)
[26] Bel, L.; Robinson, I., Unpublished King’s college lectures (1958), C. R. Math. Acad. Sci. Paris, C. R. Math. Acad. Sci. Paris, Class. Quantum Gravity, 14, 4331, (1997)
[27] Deser, S.; Kay, J. H.; Stelle, K. S.; Kallosh, R. E.; Howe, P. S.; Stelle, K. S.; Townsend, P. K., Phys. Rev. Lett., Phys. Lett. B, Nucl. Phys. B, 191, 445, (1981)
[28] Deser, S.; Seminara, D., Phys. Rev. Lett., Phys. Rev. D, 62, 2435, (2000) · Zbl 0949.83073
[29] Turner, N. W.P., Ultra-violet infinities and counterterms in higher dimensional Yang-Mills and gravity, (2003), University of Wales, Ph.D. thesis · Zbl 0999.81054
[30] Benincasa, P.; Boucher-Veronneau, C.; Cachazo, F., J. High Energy Phys., 0711, (2007)
[31] Risager, K., J. High Energy Phys., 0512, (2005)
[32] Bjerrum-Bohr, N. E.J.; Dunbar, D. C.; Ita, H.; Perkins, W. B.; Risager, K., J. High Energy Phys., 0601, (2006)
[33] Dunbar, D. C.; Julia, B.; Seminara, D.; Trigiante, M., J. High Energy Phys., 0001, (2000)
[34] Green, M. B.; Schwarz, J. H.; Witten, E., Cambridge Monographs On Mathematical Physics, (1987), Cambridge University Press Cambridge, UK, 596 pp
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.