×

Stationary distribution of a stochastic SIS epidemic model with double diseases and the Beddington-DeAngelis incidence. (English) Zbl 1390.92144

Summary: In this paper, a stochastic susceptible-infected-susceptible (SIS) epidemic model with double diseases and the Beddington-DeAngelis incidence is proposed and studied. Sufficient conditions for the existence of an ergodic stationary distribution of the positive solutions to the model are obtained via the Lyapunov function method. The existence of stationary distribution implies stochastic stability to some extent.{
©2017 American Institute of Physics}

MSC:

92D30 Epidemiology
93D30 Lyapunov and storage functions
93E15 Stochastic stability in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Gray, A.; Greenhalgh, D.; Hu, L.; Mao, X.; Pan, J., A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71, 876-902 (2011) · Zbl 1263.34068 · doi:10.1137/10081856X
[2] Chen, Q.; Teng, Z.; Wang, L.; Jiang, H., The existence of codimension-two bifurcation in a discrete SIS epidemic model with standard incidence, Nonlinear Dyn., 71, 55-73 (2013) · Zbl 1269.92062 · doi:10.1007/s11071-012-0641-6
[3] Kuniya, T.; Inaba, H., Endemic threshold results for an age-structured SIS epidemic model with periodic parameters, J. Math. Anal. Appl., 402, 477-492 (2013) · Zbl 1263.92041 · doi:10.1016/j.jmaa.2013.01.044
[4] Li, X.; Li, W.; Ghosh, M., Stability and bifurcation of an SIS epidemic model with treatment, Chaos Solitons Fractals, 42, 2822-2832 (2009) · Zbl 1198.34060 · doi:10.1016/j.chaos.2009.04.024
[5] Zhang, X.; Liu, X., Backward bifurcation and global dynamics of an SIS epidemic model with general incidence rate and treatment, Nonlinear Anal., 2, 565-575 (2009) · Zbl 1167.34338 · doi:10.1016/j.nonrwa.2007.10.011
[6] Zhao, Y.; Jiang, D.; O’Regan, D., The extinction and persistence of the stochastic SIS epidemic model with vaccination, Physica A, 392, 4916-4927 (2013) · Zbl 1395.92180 · doi:10.1016/j.physa.2013.06.009
[7] Meng, X.; Zhao, S.; Feng, T.; Zhang, T., Dynamics of a novel nonlinear stochastic SIS epidemic model with double epidemic hypothesis, J. Math. Anal. Appl., 433, 227-242 (2016) · Zbl 1354.92089 · doi:10.1016/j.jmaa.2015.07.056
[8] Meng, X.; Li, Z.; Wang, X., Dynamics of a novel nonlinear SIR model with double epidemic hypothesis and impulsive effects, Nonlinear Dyn., 59, 503-513 (2010) · Zbl 1183.92072 · doi:10.1007/s11071-009-9557-1
[9] Korobeinikov, A., Lyapunov functions and global stability for SIR and SIRS epidemiological models with nonlinear transmission, Bull. Math. Biol., 68, 615-626 (2006) · Zbl 1334.92410 · doi:10.1007/s11538-005-9037-9
[10] Cantrell, R. S.; Cosner, C., On the dynamics of predator-prey models with the Beddington-DeAngelis functional response, J. Math. Anal. Appl., 257, 206-222 (2001) · Zbl 0991.34046 · doi:10.1006/jmaa.2000.7343
[11] Harrison, G. W., Comparing predator-prey models to Luckinbill”s experiment with didinium and paramecium, Ecology, 76, 357-374 (1995) · doi:10.2307/1941195
[12] Qui, P.; Yu, J.; Zou, Y., The asymptotic behavior of a chemostat model with the Beddington-DeAngelis functional response, Math. Biosci., 187, 175-187 (2004) · Zbl 1049.92039 · doi:10.1016/j.mbs.2003.10.001
[13] Liu, Q.; Jiang, D., The threshold of a stochastic delayed SIR epidemic model with vaccination, Physica A, 461, 140-147 (2016) · Zbl 1400.92517 · doi:10.1016/j.physa.2016.05.036
[14] Liu, Q.; Chen, Q.; Jiang, D., The threshold of a stochastic delayed SIR epidemic model with temporary immunity, Physica A, 450, 115-125 (2016) · Zbl 1400.92516 · doi:10.1016/j.physa.2015.12.056
[15] Jiang, D.; Yu, J.; Ji, C.; Shi, N., Asymptotic behavior of global positive solution to a stochastic SIR model, Math. Comput. Modell., 54, 221-232 (2011) · Zbl 1225.60114 · doi:10.1016/j.mcm.2011.02.004
[16] Lin, Y.; Jiang, D., Long-time behavior of perturbed SIR model by white noise, Discrete Contin. Dyn. Syst. Ser. B, 18, 1873-1887 (2013) · Zbl 1435.92077 · doi:10.3934/dcdsb.2013.18.1873
[17] Arnold, L.; Horsthemke, W.; Stucki, J. W., The influence of external real and white noise on the Lotka-Volterra model, J. Biomed., 21, 451-471 (1979) · Zbl 0433.92019 · doi:10.1002/bimj.4710210507
[18] Bandyopadhyay, M.; Chattopadhyay, J., Ratio-dependent predator-prey model: Effect of environmental fluctuation and stability, Nonlinearity, 18, 913-936 (2005) · Zbl 1078.34035 · doi:10.1088/0951-7715/18/2/022
[19] Carletti, M.; Burrage, K.; Burrage, P. M., Numerical simulation of stochastic ordinary differential equationsin biomathematical modelling, Math. Comput. Simul., 64, 271-277 (2004) · Zbl 1039.65005 · doi:10.1016/j.matcom.2003.09.022
[20] Zhao, Y.; Jiang, D., The threshold of a stochastic SIS epidemic model with vaccination, Appl. Math. Comput., 243, 718-727 (2014) · Zbl 1335.92108 · doi:10.1016/j.amc.2014.05.124
[21] Lahrouz, A.; Settati, A., Necessary and sufficient condition for extinction and persistence of SIRS system with random perturbation, Appl. Math. Comput., 233, 10-19 (2014) · Zbl 1334.92412 · doi:10.1016/j.amc.2014.01.158
[22] Zhou, Y.; Zhang, W.; Yuan, S., Survival and stationary distribution of a SIR epidemic model with stochastic perturbations, Appl. Math. Comput., 244, 118-131 (2014) · Zbl 1335.92109 · doi:10.1016/j.amc.2014.06.100
[23] Lahrouz, A.; Omari, L.; Kiouach, D., Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model, Nonlinear Anal. Modell. Control, 16, 59-76 (2011) · Zbl 1271.93015
[24] Mao, X., Stochastic Differential Equations and Applications (1997) · Zbl 0874.60050
[25] Has’minskii, R. Z., Stochastic Stability of Differential Equations, Sijthoff and Noordhoff (1980) · Zbl 0441.60060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.