Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction. (English) Zbl 1391.74234

Summary: The interaction between a fluid and a poroelastic structure is a complex problem that couples the Navier-Stokes equations with the Biot system. The finite element approximation of this problem is involved due to the fact that both subproblems are indefinite. In this work, we first design residual-based stabilization techniques for the Biot system, motivated by the variational multiscale approach. Then, we state the monolithic Navier-Stokes/Biot system with the appropriate transmission conditions at the interface. For the solution of the coupled system, we adopt both monolithic solvers and heterogeneous domain decomposition strategies. Different domain decomposition methods are considered and their convergence is analyzed for a simplified problem. We compare the efficiency of all the methods on a test problem that exhibits a large added-mass effect, as it happens in hemodynamics applications.


74S05 Finite element methods applied to problems in solid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76D05 Navier-Stokes equations for incompressible viscous fluids
76S05 Flows in porous media; filtration; seepage
Full Text: DOI


[1] Badia, S.; Codina, R., On some fluid – structure iterative algorithms using pressure segregation methods. application to aeroelasticity, Int. J. numer. methods engrg., 72, 46-71, (2007) · Zbl 1194.74361
[2] Badia, S.; Codina, R., On a multiscale approach to the transient Stokes problem. transient subscales and anisotropic space – time discretization, Appl. math. comput., 207, 2, 415-433, (2009) · Zbl 1163.76026
[3] Badia, S.; Codina, R., Unified stabilized finite element formulations for the Stokes and the Darcy problems, SIAM J. numer. anal., 207, 3, 1977-2000, (2009) · Zbl 1406.76047
[4] S. Badia, R. Codina, Stabilized continuous and discontinuous Galerkin techniques for Darcy flow. UPCommons, http://hdl.handle.net/2117/2168, submitted for publication. · Zbl 1231.76134
[5] Badia, S.; Nobile, F.; Vergara, C., Fluid – structure partitioned procedures based on Robin transmission conditions, J. comput. phys., 227, 7027-7051, (2008) · Zbl 1140.74010
[6] Badia, S.; Nobile, F.; Vergara, C., Robin – robin preconditioned Krylov methods for fluid – structure interaction problems, Comput. methods appl. mech. engrg., 198, 33-36, 2768-2784, (2009) · Zbl 1228.76079
[7] Badia, S.; Quaini, A.; Quarteroni, A., Modular vs. non-modular preconditioners for fluid – structure systems with large-added-mass effect, Comput. methods appl. mech. engrg., 197, 49-50, 4216-4232, (2008) · Zbl 1194.74058
[8] Badia, S.; Quaini, A.; Quarteroni, A., Splitting methods based on algebraic factorization for fluid – structure interaction, SIAM J. sci. comput., 30, 4, 1778-1805, (2008) · Zbl 1368.74021
[9] Beavers, G.S.; Joseph, D.D., Boundary conditions at a naturally permeable wall, J. fluid mech., 30, 197-207, (1967)
[10] Biot, M.A., General theory of three-dimensional consolidation, J. appl. phys., 12, 155-164, (1941) · JFM 67.0837.01
[11] Biot, M.A., Theory of elasticity and consolidation for a porous anisotropic solid, J. appl. phys., 25, 182-185, (1955) · Zbl 0067.23603
[12] Biot, M.A., Theory of finite deformations of porous solids, Indiana univ. math. J., 21, 597-620, (1971/72) · Zbl 0229.76065
[13] Bochev, P.; Gunzburger, M.; Lehoucq, R., On stabilized finite element methods for the Stokes problem in the small time-step limit, Int. J. numer. methods fluids, 53, 573-597, (2007), Sandia National Laboratories Report SAND 2005-7817J · Zbl 1104.76059
[14] Brezzi, F.; Douglas, J.; Duran, R.; Fortin, M., Mixed finite elements for second order elliptic problems in three variables, Numer. math., 51, 237-250, (1987) · Zbl 0631.65107
[15] Brezzi, F.; Douglas, J.; Fortin, M.; Marini, L.D., Efficient rectangluar mixed finite elements in two and three spaces variables, Math. model. numer. anal., 21, 581-604, (1987) · Zbl 0689.65065
[16] Brezzi, F.; Douglas, J.; Marini, L.D., Two families of mixed finite elements for second order elliptic problems, Numer. meth., 47, 217-235, (1985) · Zbl 0599.65072
[17] Brezzi, F.; Fortin, M., Mixed and hybrid finite element methods, (1991), Springer-Verlag · Zbl 0788.73002
[18] Brezzi, F.; Hughes, T.J.R.; Süli, E., Variational approximation of flux in conforming finite element methods for elliptic partial differential equations: a model problem, Rend. mat. acc. linceis, 9, 12, 167-183, (2001)
[19] Calo, V.M.; Brasher, N.F.; Bazilevs, Y.; Hughes, T.J.R., Multiphysics model for blood flow and drug transport with application to patient-specific coronary artery flow, Comput. mech., 43, 1, 161-177, (2008) · Zbl 1169.76066
[20] Causin, P.; Gerbeau, J.F.; Nobile, F., Added-mass effect in the design of partitioned algorithms for fluid – structure problems, Comput. methods appl. mech. engrg., 194, 42-44, 4506-4527, (2005) · Zbl 1101.74027
[21] Chan, B.; Donzelli, P.S.; Spilker, R.L., A mixed-penalty biphasic finite element formulation incorporating viscous fluids and material interfaces, Ann. biomed. engrg., 28, 589-597, (2000)
[22] Chiumenti, M.; Valverde, Q.; Agelet de Saracibar, C.; Cervera, M., A stabilized formulation for incompressible elasticity using linear displacement and pressure interpolations, Comput. methods appl. mech. engrg., 191, 5253-5264, (2002) · Zbl 1083.74584
[23] Codina, R., A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection – diffusion equation, Comput. methods appl. mech. engrg., 110, 325-342, (1993) · Zbl 0844.76048
[24] Codina, R., Comparison of some finite element methods for solving the diffusion – convection-reaction equation, Comput. methods appl. mech. engrg., 156, 185-210, (1998) · Zbl 0959.76040
[25] Codina, R., Stabilization of incompressibility and convection through orthogonal subscales in finite element methods, Comput. methods appl. mech. engrg., 190, 1579-1599, (2000) · Zbl 0998.76047
[26] Codina, R., A stabilized finite element method for generalized stationary incompressible flows, Comput. methods appl. mech. engrg., 190, 2681-2706, (2001) · Zbl 0996.76045
[27] Codina, R., Stabilized finite element approximation of transient incompressible flows using orthogonal subscales, Comput. methods appl. mech. engrg., 191, 4295-4321, (2002) · Zbl 1015.76045
[28] Codina, R.; Principe, J.; Guasch, O.; Badia, S., Time-dependent subscales in the stabilized finite element approximation of incompressible flow problems, Comput. methods appl. mech. engrg., 196, 2413-2430, (2007) · Zbl 1173.76335
[29] Coussy, O., Mechanics of porous continua, (1995), John Wiley and Sons
[30] S. Deparis, Numerical analysis of axisymmetric flows and methods for fluid – structure interaction arising in blood flow simulation. Ph.D. Thesis, École Polytechnique Fédérale de Lausanne, 2004.
[31] Deparis, S.; Discacciati, M.; Fourestey, G.; Quarteroni, A., Fluid – structure algorithms based on steklov – poincaré operators, Comput. methods appl. mech. engrg., 195, 41-43, 5797-5812, (2006) · Zbl 1124.76026
[32] M. Discacciati, Domain decomposition methods for the coupling of surface and groundwater flows. Ph.D. Thesis, École Polytechnique Fédérale de Lausanne, 2004.
[33] Discacciati, M.; Quarteroni, A., Navier – stokes/Darcy coupling: modeling, analysis, and numerical approximation, Rev. mater. comput., 22, 2, 315-426, (2009) · Zbl 1172.76050
[34] Discacciati, M.; Quarteroni, A.; Valli, A., Robin – robin domain decomposition methods for the stokes – darcy coupling, SIAM J. numer. anal., 45, 3, 1246-1268, (2007) · Zbl 1139.76030
[35] Ene, H.I.; Sánchez-Palencia, E., Équations et phénomènes de surface pour l’écoulement dans un modèle de millieu poreux, J. Mécanique, 14, 73-108, (1975) · Zbl 0304.76037
[36] Engelman, M.S.; Sani, R.L.; Gresho, P., The implementation of normal and/or tangential boundary conditions in finite element codes for incompressible fluid flow, Int. J. numer. methods fluids, 2, 225-238, (1982) · Zbl 0501.76001
[37] Ern, A.; Guermond, J.L., Theory and practice of finite elements, (2004), Springer-Verlag · Zbl 1059.65103
[38] Fernández, M.A.; Gerbeau, J.F.; Grandmont, C., A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid, J. numer. methods engrg., 69, 4, 794-821, (2007) · Zbl 1194.74393
[39] Fernández, M.A.; Moubachir, M., A Newton method using exact Jacobians for solving fluid – structure coupling, Comput. struct., 83, 2-3, 127-142, (2005)
[40] ()
[41] Gartling, D.K.; Hickox, C.E.; Givler, R.C., Simulation of coupled viscous and porous flow problems, Comput. fluid dyn., 7, 23-48, (1996) · Zbl 0879.76104
[42] Glowinski, R.; Pan, T.; Périaux, J., A fictitious domain method for external incompressible viscous flow modelled by navier – stokes equations, Comput. methods appl. mech. engrg., 111, 133-148, (1994) · Zbl 0845.76069
[43] Hughes, T.J.R., Multiscale phenomena: green’s function, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized formulations, Comput. methods appl. mech. engrg., 127, 387-401, (1995) · Zbl 0866.76044
[44] Hughes, T.J.R.; Feijóo, G.R.; Mazzei, L.; Quincy, J.B., The variational multiscale method – a paradigm for computational mechanics, Comput. methods appl. mech. engrg., 166, 3-24, (1998) · Zbl 1017.65525
[45] Hughes, T.J.R.; Mazzei, L.; Jansen, K.E., Large eddy simulation and the variational multiscale method, Comput. visualizat. sci., 3, 47-59, (2000) · Zbl 0998.76040
[46] Jäger, W.; Mikelić, A., On the boundary conditions at the contact interface between a porous medium and a free fluid, Ann. scuola norm. sup. Pisa cl. sci., 23, 3, 403-465, (1996) · Zbl 0878.76076
[47] Jäger, W.; Mikelić, A., On the interface boundary condition Beavers, Joseph, and Saffman, SIAM J. appl. math., 60, 4, 1111-1127, (2000) · Zbl 0969.76088
[48] Jones, I.P., Low Reynolds number flow past a porous spherical shell, Proc. camb. phil. soc., 73, 231-238, (1973) · Zbl 0262.76061
[49] Koshiba, N.; Ando, J.; Chen, X.; Hisada, T., Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model, J. biomech. engrg., 129, 374-385, (2007)
[50] Layton, W.J.; Schieweck, F.; Yotov, I., Coupling fluid flow with porous media flow, SIAM J. numer. anal., 40, 6, 2195-2218, (2002) · Zbl 1037.76014
[51] Levy, T.; Sánchez-Palencia, E., On boundary conditions for fluid flow in porous media, Int. J. engrg. sci., 13, 923-940, (1975) · Zbl 0321.76038
[52] Marini, L.D.; Quarteroni, A., A relaxation procedure for domain decomposition methods using finite elements, Numer. math., 55, 575-598, (1989) · Zbl 0661.65111
[53] Masud, A.; Hughes, T.J.R., A stabilized mixed finite element method for Darcy flow, Comput. methods appl. mech. engrg., 191, 4341-4370, (2002) · Zbl 1015.76047
[54] Masud, A.; Hughes, T.J.R., A space – time Galerkin/least-squares finite element formulation of the navier – stokes equations for moving domain problems, Comput. methods appl. mech. engrg., 146, 91-126, (1997) · Zbl 0899.76259
[55] McKay, G., The Beavers and Joseph condition for velocity slip at the surface of a porous medium, (), 126-139
[56] Michler, C.; van Brummelen, E.H.; de Borst, R., An interface newton – krylov solver for fluid – structure interaction, Int. J. numer. methods fluids, 47, 10-11, 1189-1195, (2005) · Zbl 1069.76033
[57] Mok, D.P.; Wall, W.A.; Ramm, E., Accelerated iterative substructuring schemes for instationary fluid – structure interaction, (), 1325-1328
[58] Murad, M.A.; Guerreiro, J.N.; Loula, A.F.D., Micromechanical computational modeling of reservoir compaction and surface subsidence, Math. contemp., 19, 41-69, (2000) · Zbl 1034.76054
[59] Murad, M.A.; Guerreiro, J.N.; Loula, A.F.D., Micromechanical computational modeling of secondary consolidation and hereditary creep in soils, Comput. methods appl. mech. engrg., 190, 15-17, 1985-2016, (2001) · Zbl 1114.74490
[60] Nield, D.A.; Bejan, A., Convection in porous media, (1999), Springer-Verlag New York · Zbl 0924.76001
[61] F. Nobile, Numerical Approximation of Fluid-Structure Interaction Problems with Application to Haemodynamics, Ph.D. Thesis, École Polytechnique Fédérale de Lausanne, 2001.
[62] Oberai, A.A.; Pinsky, P.M., A multiscale finite element method for the helmohltz equation, Comput. methods appl. mech. engrg., 154, 281-297, (1998) · Zbl 0937.65119
[63] Peskin, C.S., The immersed boundary method, Acta numer., 11, 479-517, (2002) · Zbl 1123.74309
[64] Prosi, M.; Zunino, P.; Perktold, K.; Quarteroni, A., Mathematical and numerical models for transfer of low-density lipoproteins through the arterial wall: a new methodology for the model set up with applications to the study of disturbed lumenal flow, J. biomech., 38, 903-917, (2005)
[65] Quarteroni, A.; Valli, A., Numerical approximation of partial differential equations, (1994), Springer-Verlag · Zbl 0852.76051
[66] Quarteroni, A.; Valli, A., Domain decomposition methods for partial differential equations, (1999), Oxford Science Publications · Zbl 0931.65118
[67] Raviart, P.A.; Thomas, J.M., A mixed finite element method for second order elliptic problems, volume mathematical aspects of the finite element method, lecture notes in mathematics, (1977), Springer New York · Zbl 0362.65089
[68] Saad, Y., Iterative methods for sparse linear systems, (1996), PWS Publishing Boston, MA · Zbl 1002.65042
[69] Saffman, A.G., On the boundary condition at the surface of a porous medium, Studies appl. math., 1, 93-101, (1971) · Zbl 0271.76080
[70] Salinger, A.G.; Aris, R.; Derby, J.J., Finite element formulations for large-scale, coupled flows in adjacent porous and open fluid domains, Int. J. numer. methods fluids, 18, 1185-1209, (1994) · Zbl 0807.76039
[71] Salomoni, V.A.; Schrefler, B.A., Stabilized-coupled modelling of creep phenomena for saturated porous media, Int. J. numer. methods engrg., 66, 1587-1617, (2006) · Zbl 1110.74830
[72] Sánchez-Palencia, E., Nonhomogeneous media and vibration theory. lecture notes in physics, (1980), Springer-Verlag Berlin
[73] Showalter, R.E., Poroelastic filtration coupled to Stokes flow, (), 229-241 · Zbl 1084.76070
[74] Le Tallec, P.; Mouro, J., Fluid – structure interaction with large structural displacements, Comput. methods appl. mech. engrg., 190, 3039-3067, (2001) · Zbl 1001.74040
[75] J.M. Thomas, Sur l’analyse numérique des méthodes d’éléments finis hybrides et mixtes, Ph.D. Thesis, Université Pierre et Marie Curie, 1977.
[76] Whale, M.; Grodzisky, A.; Johnson, A., The effect of aging and pressure on the patient hydraulic conductivity of the aortic wall, Biorheology, 33, 17-44, (1996)
[77] P. Zunino, Mathematical and numerical modeling of mass transfer in the vascular system, Ph.D. Thesis, École Polytechnique Fédérale de Lausanne, 2002.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.