zbMATH — the first resource for mathematics

On special zeros of \(p\)-adic \(L\)-functions of Hilbert modular forms. (English) Zbl 1392.11027
Summary: Let \(E\) be a modular elliptic curve over a totally real number field \(F\). We prove the weak exceptional zero conjecture which links a (higher) derivative of the \(p\)-adic \(L\)-function attached to \(E\) to certain \(p\)-adic periods attached to the corresponding Hilbert modular form at the places above \(p\) where \(E\) has split multiplicative reduction. Under some mild restrictions on \(p\) and the conductor of \(E\) we deduce the exceptional zero conjecture in the strong form (i.e. where the automorphic \(p\)-adic periods are replaced by the \(\mathcal{L}\)-invariants of \(E\) defined in terms of Tate periods) from a special case proved earlier by C. P. Mok [Compos. Math. 145, No. 1, 1–55 (2009; Zbl 1247.11071)]. Crucial for our method is a new construction of the \(p\)-adic \(L\)-function of \(E\) in terms of local data.

11F41 Automorphic forms on \(\mbox{GL}(2)\); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces
11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
11F70 Representation-theoretic methods; automorphic representations over local and global fields
11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture
Full Text: DOI
[1] Barthel, L.; Livne, R., Modular representations of GL_{2} of a local field: the ordinary, unramified case, J. Number Theory, 55, 1-27, (1995) · Zbl 0841.11026
[2] Bertolini, M.; Darmon, H.; Iovita, A., Families of automorphic forms on definite quaternion algebras and teitelbaum’s conjecture, Astérisque, 331, 29-64, (2010) · Zbl 1251.11033
[3] Breuil, C.: Invariant \(\mathcal{L}\) et série spéciale \(p\)-adique. Ann. Sci. Éc. Norm. Super. 37, 559-610 (2004) · Zbl 1166.11331
[4] Brown, K.S.: Cohomology of Groups. Graduate Texts in Mathematics, vol. 87. Springer, Berlin (1982) · Zbl 0584.20036
[5] Bump, D.: Automorphic Forms and Representations. Cambridge Studies in Advanced Mathematics, vol. 55. Cambridge University Press, Cambridge (1996) · Zbl 0868.11022
[6] Bushnell, C., Henniart, G.: The Local Langlands Conjecture for \(\operatorname{GL}(2)\). Springer, Berlin (2006) · Zbl 1100.11041
[7] Carayol, H.: Sur les représentations \(ℓ\)-adiques associées aux formes modulaires de Hilbert. Ann. Sci. Éc. Norm. Super. 19, 409-468 (1986) · Zbl 0616.10025
[8] Casselman, W., On some results of Atkin and lehner, Math. Ann., 201, 301-314, (1973) · Zbl 0239.10015
[9] Charollois, P., Dasgupta, S.: Integral Eisenstein cocycles on \(\operatorname{GL}_{n}\), I: Szech’s cocycle and \(p\)-adic \(L\)-functions of totally real fields. Preprint, available at arXiv:1206.3050 · Zbl 1353.11074
[10] Dabrowski, A., \(P\)-adic \(L\)-functions of Hilbert modular forms, Ann. Inst. Fourier, 44, 1025-1041, (1994) · Zbl 0808.11035
[11] Darmon, H., Integration on \(\mathcal{H}_{p} × \mathcal{H}\) and arithmetic applications, Ann. Math., 154, 589-639, (2001) · Zbl 1035.11027
[12] Friedberg, S.; Hoffstein, J., Nonvanishing theorems for automorphic \(L\)-functions on \(\operatorname{GL}(2)\), Ann. Math., 142, 385-423, (1995) · Zbl 0847.11026
[13] Greenberg, M., Stark-Heegner points and the cohomology of quaternionic Shimura varieties, Duke Math. J., 147, 541-575, (2009) · Zbl 1183.14030
[14] Greenberg, M., Iovita, A., Spieß, M.: (in preparation) · Zbl 0847.11026
[15] Greenberg, R.; Stevens, G., \(p\)-adic \(L\)-functions and \(p\)-adic periods of modular forms, Invent. Math., 111, 407-447, (1993) · Zbl 0778.11034
[16] Harder, G., Eisenstein cohomology of arithmetic groups. the case \(\operatorname{GL}_{2}\), Invent. Math., 89, 37-118, (1987) · Zbl 0629.10023
[17] Hida, H., \(\mathcal{L}\)-invariants of Tate curves, Pure Appl. Math. Q., 5, 1343-1384, (2009) · Zbl 1244.11056
[18] Mac Lane, S.: Homology. Springer, Berlin (1963)
[19] Manin, Y., Non-Archimedean integration and Jacquet-Langlands \(p\)-adic \(L\)-functions, Usp. Mat. Nauk, 31, 5-54, (1976) · Zbl 0348.12016
[20] Mazur, B.; Tate, J.; Teitelbaum, J., On \(p\)-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math., 84, 1-48, (1986) · Zbl 0699.14028
[21] Mok, C.P., The exceptional zero conjecture for Hilbert modular forms, Compos. Math., 145, 1-55, (2007) · Zbl 1247.11071
[22] Orton, L., An elementary proof of a weak exceptional zero conjecture, Can. J. Math., 56, 373-405, (2004) · Zbl 1060.11030
[23] Panchishkin, A.A.: Non-Archimedean \(L\)-Functions Associated with Siegel and Hilbert Modular Forms. Lect. Notes in Math., vol. 1471. Springer, Berlin (1991) · Zbl 0732.11026
[24] Serre, J.-P.: Cohomologie des groupes discrets. Ann. Math. Stud. 70, 77-169 (1971) · Zbl 0273.57022
[25] Serre, J.-P.: Cours au Collège de France 1987-1988
[26] Spieß, M.: Shintani cocycles and vanishing order of \(L\)_{\(p\)}(\(χ\),\(s\)) at \(s\)=0. Preprint, available at arXiv:1203.6689 · Zbl 1307.11125
[27] Taylor, R., On Galois representations associated to Hilbert modular forms, Invent. Math., 98, 265-280, (1989) · Zbl 0705.11031
[28] Teitelbaum, J., Values of \(p\)-adic \(L\)-functions and a \(p\)-adic Poisson kernel, Invent. Math., 101, 395-410, (1990) · Zbl 0731.11065
[29] Waldspurger, J.: Correspondances de Shimura et quaternions. Forum Math. 3, 219-307 (1991) · Zbl 0724.11026
[30] Wintenberger, J.-P.: Potential modularity of elliptic curves over totally real fields. Appendix to: J. Nekovar, On the parity of ranks of Selmer groups IV. Compos. Math. 145, 1351-1359 (2009) · Zbl 0731.11065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.