Divergence-free \(H(\operatorname{div})\)-FEM for time-dependent incompressible flows with applications to high Reynolds number vortex dynamics. (English) Zbl 1392.35210

Summary: In this article, we consider exactly divergence-free \(H(\operatorname{div})\)-conforming finite element methods for time-dependent incompressible viscous flow problems. This is an extension of previous research concerning divergence-free \(H^1\)-conforming methods. For the linearised Oseen case, the first semi-discrete numerical analysis for time-dependent flows is presented whereby special emphasis is put on pressure- and Reynolds-semi-robustness. For convection-dominated problems, the proposed method relies on a velocity jump upwind stabilisation which is not gradient-based. Complementing the theoretical results, \(H(\operatorname{div})\)-FEM are applied to the simulation of full nonlinear Navier-Stokes problems. Focussing on dynamic high Reynolds number examples with vortical structures, the proposed method proves to be capable of reliably handling the planar lattice flow problem, Kelvin-Helmholtz instabilities and freely decaying two-dimensional turbulence.


35Q30 Navier-Stokes equations
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76D17 Viscous vortex flows
76M10 Finite element methods applied to problems in fluid mechanics
76E06 Convection in hydrodynamic stability
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI arXiv


[1] Ahmed, N, On the Grad-div stabilization for the steady Oseen and Navier-Stokes equations, Calcolo, 54, 471-501, (2017) · Zbl 1375.35305
[2] Ahmed, N; Chacón Rebollo, T; John, V; Rubino, S, Analysis of a full space-time discretization of the Navier-Stokes equations by a local projection stabilization method, IMA J. Numer. Anal., 37, 1437-1467, (2017) · Zbl 1407.76059
[3] Ahmed, N., Linke, A., Merdon, C.: On really locking-free mixed finite element methods for the transient incompressible Stokes equations (2017). doi:10.20347/WIAS.PREPRINT.2368 · Zbl 1422.65218
[4] Bazilevs, Y; Michler, C; Calo, VM; Hughes, TJR, Weak Dirichlet boundary conditions for wall-bounded turbulent flows, Comput. Methods Appl. Mech. Engrg., 196, 4853-4862, (2007) · Zbl 1173.76397
[5] Bertozzi, AL, Heteroclinic orbits and chaotic dynamics in planar fluid flows, SIAM J. Math. Anal., 19, 1271-1294, (1988) · Zbl 0656.76025
[6] Boffetta, G; Ecke, RE, Two-dimensional turbulence, Annu. Rev. Fluid Mech., 44, 427-451, (2012) · Zbl 1350.76022
[7] Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer-Verlag, Berlin (2013) · Zbl 1277.65092
[8] Botti, L; Pietro, DA, A pressure-correction scheme for convection-dominated incompressible flows with discontinuous velocity and continuous pressure, J. Comput. Phys., 230, 572-585, (2011) · Zbl 1283.76030
[9] Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. Springer Science & Business Media, New York (2013) · Zbl 1286.76005
[10] Bracco, A; McWilliams, JC; Murante, G; Provenzale, A; Weiss, JB, Revisiting freely decaying two-dimensional turbulence at millennial resolution, Phys. Fluids, 12, 2931-2941, (2000) · Zbl 1184.76069
[11] Burman, E, Interior penalty variational multiscale method for the incompressible Navier-Stokes equation: monitoring artificial dissipation, Comput. Methods Appl. Mech. Engrg., 196, 4045-4058, (2007) · Zbl 1173.76332
[12] Burman, E; Fernández, MA, Continuous interior penalty finite element method for the time-dependent Navier-Stokes equations: space discretization and convergence, Numer. Math., 107, 39-77, (2007) · Zbl 1117.76032
[13] Burman, E; Fernández, MA; Hansbo, P, Continuous interior penalty finite element method for oseen’s equations, SIAM J. Numer. Anal., 44, 1248-1274, (2006) · Zbl 1344.76049
[14] Charnyi, S; Heister, T; Olshanskii, MA; Rebholz, LG, On conservation laws of Navier-Stokes Galerkin discretizations, J. Comput. Phys., 337, 289-308, (2017)
[15] Cockburn, B; Kanschat, G; Schötzau, D, A locally conservative LDG method for the incompressible Navier-Stokes equations, Math. Comp., 74, 1067-1095, (2005) · Zbl 1069.76029
[16] Cockburn, B; Kanschat, G; Schötzau, D, A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations, J. Sci. Comput., 31, 61-73, (2007) · Zbl 1151.76527
[17] Dallmann, H; Arndt, D; Lube, G, Local projection stabilization for the Oseen problem, IMA J. Numer. Anal., 36, 796-823, (2016) · Zbl 1433.76079
[18] Davidson, P.A.: Turbulence: An Introduction for Scientist and Engineers. Oxford University Press, (2004) · Zbl 1061.76001
[19] Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Springer-Verlag, Berlin (2012) · Zbl 1231.65209
[20] Durst, F.: Fluid Mechanics: An Introduction to the Theory of Fluid Flows. Springer-Verlag, Berlin (2008) · Zbl 1153.76001
[21] Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Springer, New York (2004) · Zbl 1059.65103
[22] Evans, J.A.: Divergence-free B-spline Discretizations for Viscous Incompressible Flows. Ph.D. thesis, The University of Texas at Austin (2011) · Zbl 1344.76049
[23] Evans, JA; Hughes, TJR, Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations, J. Comput. Phys., 241, 141-167, (2013) · Zbl 1349.76054
[24] Frutos, J; García-Archilla, B; John, V; Novo, J, Grad-div stabilization for the evolutionary Oseen problem with inf-sup stable finite elements, J. Sci. Comput., 66, 991-1024, (2016) · Zbl 1462.65138
[25] Gravemeier, V; Wall, WA; Ramm, E, Large eddy simulation of turbulent incompressible flows by a three-level finite element method, Int. J. Numer. Meth. Fluids, 48, 1067-1099, (2005) · Zbl 1070.76034
[26] Groesen, E, Time-asymptotics and the self-organization hypothesis for 2D Navier-Stokes equations, Physica A, 148, 312-330, (1988) · Zbl 0678.76020
[27] Guzmán, J., Shu, C.W., Sequeira, F.A.: H(div) conforming and DG methods for incompressible Euler’s equations. IMA J. Numer. Anal. (2016). doi:10.1093/imanum/drw054 · Zbl 1433.76079
[28] Hillewaert, K.: Development of the Discontinuous Galerkin Method for High-Resolution, Large Scale CFD and Acoustics in Industrial Geometries. Ph.D. thesis, Université catholique de Louvain (2013)
[29] Jenkins, EW; John, V; Linke, A; Rebholz, LG, On the parameter choice in Grad-div stabilization for the Stokes equations, Adv. Comput. Math., 40, 491-516, (2014) · Zbl 1426.76272
[30] John, V, An assessment of two models for the subgrid scale tensor in the rational LES model, J. Comput. Appl. Math., 173, 57-80, (2005) · Zbl 1107.76040
[31] John, V.: Finite Element Methods for Incompressible Flow Problems. Springer International Publishing, (2016) · Zbl 1358.76003
[32] John, V; Linke, A; Merdon, C; Neilan, M; Rebholz, LG, On the divergence constraint in mixed finite element methods for incompressible flows, SIAM Rev., 59, 492-544, (2017) · Zbl 1426.76275
[33] Lesieur, M.: Turbulence in Fluids, 4th edn. Springer, Netherlands (2008) · Zbl 1138.76004
[34] Lesieur, M; Staquet, C; Roy, P; Comte, P, The mixing layer and its coherence examined from the point of view of two-dimensional turbulence, J. Fluid Mech., 192, 511-534, (1988)
[35] Linke, A; Merdon, C, Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 311, 304-326, (2016)
[36] Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge University Press, (2002) · Zbl 0983.76001
[37] Melander, M.V., Zabusky, N.J., McWilliams, J.C.: Symmetric vortex merger in two dimensions: causes and conditions. J. Fluid Mech. 195, 303-340 (1988) · Zbl 0653.76020
[38] Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. SIAM (2008) · Zbl 1426.76275
[39] Roos, H.G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems, 2nd edn. Springer-Verlag, Berlin (2008) · Zbl 1155.65087
[40] San, O; Staples, AE, High-order methods for decaying two-dimensional homogeneous isotropic turbulence, Comput. & Fluids, 63, 105-127, (2012) · Zbl 1365.76064
[41] Schlichting, H., Gersten, K.: Boundary-Layer Theory, 8th edn. Springer-Verlag, Berlin (2000) · Zbl 0940.76003
[42] Schroeder, P.W., Lube, G.: Pressure-robust analysis of divergence-free and conforming FEM for evolutionary incompressible Navier-Stokes flows. J. Numer. Math. (2017). doi:10.1515/jnma-2016-1101 · Zbl 1388.76151
[43] Scott, LR; Vogelius, M, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, ESAIM: M2AN, 19, 111-143, (1985) · Zbl 0608.65013
[44] Tabeling, P, Two-dimensional turbulence: a physicist approach, Phys. Rep., 362, 1-62, (2002) · Zbl 1001.76041
[45] Thuburn, J; Kent, J; Wood, N, Cascades, backscatter and conservation in numerical models of two-dimensional turbulence, Quart. J. Roy. Meteor. Soc., 140, 626-638, (2014)
[46] Tritton, D.J.: Physical Fluid Dynamics, 2nd edn. Oxford University Press, New York (1988) · Zbl 0383.76001
[47] Vemaganti, K, Discontinuous Galerkin methods for periodic boundary value problems, Numer. Methods Partial Differential Equations, 23, 587-596, (2007) · Zbl 1114.65144
[48] Wang, J; Wang, Y; Ye, X, A robust numerical method for Stokes equations based on divergence-free H(div) finite element methods, SIAM J. Sci. Comput., 31, 2784-2802, (2009) · Zbl 1407.76074
[49] Wang, J; Ye, X, New finite element methods in computational fluid dynamics by H(div) elements, SIAM J. Numer. Anal., 45, 1269-1286, (2007) · Zbl 1138.76049
[50] Zistl, C; Hilbert, R; Janiga, G; Thévenin, D, Increasing the efficiency of postprocessing for turbulent reacting flows, Comput. Vis. Sci, 12, 383-395, (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.