×

Importance and effectiveness of representing the shapes of Cosserat rods and framed curves as paths in the special Euclidean algebra. (English) Zbl 1393.74090

Summary: We discuss how the shape of a special Cosserat rod can be represented as a path in the special Euclidean algebra. By shape we mean all those geometric features that are invariant under isometries of the three-dimensional ambient space. The representation of the shape as a path in the special Euclidean algebra is intrinsic to the description of the mechanical properties of a rod, since it is given directly in terms of the strain fields that stimulate the elastic response of special Cosserat rods. Moreover, such a representation leads naturally to discretization schemes that avoid the need for the expensive reconstruction of the strains from the discretized placement and for interpolation procedures which introduce some arbitrariness in popular numerical schemes. Given the shape of a rod and the positioning of one of its cross sections, the full placement in the ambient space can be uniquely reconstructed and described by means of a base curve endowed with a material frame. By viewing a geometric curve as a rod with degenerate point-like cross sections, we highlight the essential difference between rods and framed curves, and clarify why the family of relatively parallel adapted frames is not suitable for describing the mechanics of rods but is the appropriate tool for dealing with the geometry of curves.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
53A04 Curves in Euclidean and related spaces

Software:

CoRdE
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Antman, S.S.: Nonlinear Problems of Elasticity, 2nd edn. Applied Mathematical Sciences, vol. 107. Springer, New York (2005) · Zbl 1098.74001
[2] Cosserat, E., Cosserat, F.: Sur la statique de la ligne déformable. C. R. Acad. Sci. Paris 145, 1409-1412 (1907) · JFM 38.0693.02
[3] Cosserat, E., Cosserat, F.: Théorie des Corps Déformable. Hermann, Paris (1909) · JFM 40.0862.02
[4] Schuricht, F., Global injectivity and topological constraints for spatial nonlinearly elastic rods, J. Nonlinear Sci., 12, 423-444, (2002) · Zbl 1084.74527 · doi:10.1007/s00332-002-0462-8
[5] Giusteri, G.G.; Lussardi, L.; Fried, E., Solution of the Kirchhoff-plateau problem, J. Nonlinear Sci., 27, 1043-1063, (2017) · Zbl 1365.74085 · doi:10.1007/s00332-017-9359-4
[6] Simo, J.C.; Marsden, J.E.; Krishnaprasad, P.S., The Hamiltonian structure of nonlinear elasticity: the material and convective representations of solids, rods, and plates, Arch. Ration. Mech. Anal., 104, 125-183, (1988) · Zbl 0668.73014 · doi:10.1007/BF00251673
[7] Simo, J.C.; Posbergh, T.A.; Marsden, J.E., Stability of coupled rigid body and geometrically exact rods: block diagonalization and the energy-momentum method, Phys. Rep., 193, 279-360, (1990) · doi:10.1016/0370-1573(90)90125-L
[8] Holm, D.D.; Noakes, L.; Vankerschaver, J., Relative geodesics in the special Euclidean group, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 469, (2013) · Zbl 1371.53035 · doi:10.1098/rspa.2013.0297
[9] Eldering, J.; Vankerschaver, J., A distance on curves modulo rigid transformations, Differ. Geom. Appl., 36, 149-164, (2014) · Zbl 1301.58007 · doi:10.1016/j.difgeo.2014.08.004
[10] Holm, D.D.; Ivanov, R.I., Matrix G-strands, Nonlinearity, 27, 1445-1469, (2014) · Zbl 1351.37259 · doi:10.1088/0951-7715/27/6/1445
[11] Bertails, F.; Audoly, B.; Cani, M.-P.; Querleux, B.; Leroy, F.; Lévêque, J.-L., Super-helices for predicting the dynamics of natural hair, ACM Trans. Graph., 25, 1180-1187, (2006) · doi:10.1145/1141911.1142012
[12] Bishop, R.L., There is more than one way to frame a curve, Am. Math. Mon., 82, 246-251, (1975) · Zbl 0298.53001 · doi:10.1080/00029890.1975.11993807
[13] Antman, S.S.; Schuricht, F., The critical role of the base curve for the qualitative behavior of shearable rods, Math. Mech. Solids, 8, 75-102, (2003) · Zbl 1039.74029 · doi:10.1177/1081286503008001766
[14] Naghdi, P.M., On the formulation of contact problems of shells and plates, J. Elast., 5, 379-398, (1975) · Zbl 0334.73028 · doi:10.1007/BF00126998
[15] Hartman, P.: Ordinary Differential Equations, 2nd edn. Birkhäuser, Boston (1982) · Zbl 0476.34002
[16] Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994) · Zbl 0858.70001
[17] Agoston, M.K.: Computer Graphics and Geometric Modelling: Mathematics. Springer, New York (2005) · Zbl 1089.68132
[18] Sander, O., Geodesic finite elements for Cosserat rods, Int. J. Numer. Methods Eng., 82, 1645-1670, (2010) · Zbl 1193.74157
[19] Chirikjian, G.S., Group theory and biomolecular conformation: I. mathematical and computational models, J. Phys. Condens. Matter, 22, (2010) · doi:10.1088/0953-8984/22/32/323103
[20] Sonneville, V.; Cardona, A.; Brüls, O., Geometric interpretation of a non-linear beam finite element on the Lie group \(\mathit{SE}(3)\), Arch. Mech. Eng., 61, 305-329, (2014) · Zbl 1295.74050 · doi:10.2478/meceng-2014-0018
[21] Sonneville, V.; Cardona, A.; Brüls, O., Geometrically exact beam finite element formulated on the special Euclidean group \(\mathit{SE}(3)\), Comput. Methods Appl. Mech. Eng., 268, 451-474, (2014) · Zbl 1295.74050 · doi:10.1016/j.cma.2013.10.008
[22] Cao, D.Q.; Liu, D.; Wang, C.H.-T., Three-dimensional nonlinear dynamics of slender structures: Cosserat rod element approach, Int. J. Solids Struct., 43, 760-783, (2006) · Zbl 1119.74594 · doi:10.1016/j.ijsolstr.2005.03.059
[23] Spillmann, J.; Teschner, M., Corde: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects, Aire-la-Ville, Switzerland
[24] Bergou, M.; Wardetzky, M.; Robinson, S.; Audoly, B.; Grinspun, E., Discrete elastic rods, ACM Trans. Graph., 27, 63, (2008) · doi:10.1145/1360612.1360662
[25] Bergou, M.; Audoly, B.; Vouga, E.; Wardetzky, M.; Grinspun, E., Discrete viscous threads, ACM Trans. Graph., 29, 116, (2010) · Zbl 1349.76024 · doi:10.1145/1778765.1778853
[26] Audoly, B.; Clauvelin, N.; Brun, P.T.; Bergou, M.; Grinspun, E.; Wardetzky, M., A discrete geometric approach for simulating the dynamics of thin viscous threads, J. Comput. Phys., 253, 18-49, (2013) · Zbl 1349.76024 · doi:10.1016/j.jcp.2013.06.034
[27] Jung, P.; Leyendecker, S.; Linn, J.; Ortiz, M., A discrete mechanics approach to the Cosserat rod theory—part 1: static equilibria, Int. J. Numer. Methods Eng., 85, 31-60, (2011) · Zbl 1217.74069 · doi:10.1002/nme.2950
[28] Lang, H.; Linn, J.; Arnold, M., Multi-body dynamics simulation of geometrically exact Cosserat rods, Multibody Syst. Dyn., 25, 285-312, (2011) · Zbl 1271.74264 · doi:10.1007/s11044-010-9223-x
[29] Linn, J., Discrete kinematics of Cosserat rods based on the difference geometry of framed curves, Montréal, Canada
[30] Simo, J.C.; Vu-Quoc, L., A three-dimensional finite-strain rod model. part II: computational aspects, Comput. Methods Appl. Mech. Eng., 58, 79-116, (1986) · Zbl 0608.73070 · doi:10.1016/0045-7825(86)90079-4
[31] Borri, M.; Bottasso, C., An intrinsic beam model based on a helicoidal approximation—part I: formulation, Int. J. Numer. Methods Eng., 37, 2267-2289, (1994) · Zbl 0806.73028 · doi:10.1002/nme.1620371308
[32] Ibrahimbegović, A., On finite element implementation of geometrically nonlinear reissner’s beam theory: three-dimensional curved beam elements, Comput. Methods Appl. Mech. Eng., 122, 11-26, (1995) · Zbl 0852.73061 · doi:10.1016/0045-7825(95)00724-F
[33] Betsch, P.; Steinmann, P., Frame-indifferent beam finite elements based upon the geometrically exact beam theory, Int. J. Numer. Methods Eng., 54, 1775-1788, (2002) · Zbl 1053.74041 · doi:10.1002/nme.487
[34] Meier, C.; Popp, A.; Wall, W.A., An objective 3D large deformation finite element formulation for geometrically exact curved Kirchhoff rods, Comput. Methods Appl. Mech. Eng., 278, 445-478, (2014) · Zbl 1423.74501 · doi:10.1016/j.cma.2014.05.017
[35] Meier, C.; Popp, A.; Wall, W.A., A locking-free finite element formulation and reduced models for geometrically exact Kirchhoff rods, Comput. Methods Appl. Mech. Eng., 290, 314-341, (2015) · doi:10.1016/j.cma.2015.02.029
[36] Gaćeša, M.; Jelenić, G., Modified fixed-pole approach in geometrically exact spatial beam finite elements, Finite Elem. Anal. Des., 99, 39-48, (2015) · doi:10.1016/j.finel.2015.02.001
[37] Bauer, A.M.; Breitenberger, M.; Philipp, B.; Wüchner, R.; Bletzinger, K.-U., Nonlinear isogeometric spatial Bernoulli beam, Comput. Methods Appl. Mech. Eng., 303, 101-127, (2016) · doi:10.1016/j.cma.2015.12.027
[38] Yilmaz, M.; Omurtag, M.H., Large deflection of 3D curved rods: an objective formulation with principal axes transformations, Comput. Struct., 163, 71-82, (2016) · doi:10.1016/j.compstruc.2015.10.010
[39] Zupan, E.; Zupan, D., Velocity-based approach in non-linear dynamics of three-dimensional beams with enforced kinematic compatibility, Comput. Methods Appl. Mech. Eng., 310, 406-428, (2016) · doi:10.1016/j.cma.2016.07.024
[40] Zupan, D.; Saje, M., Finite-element formulation of geometrically exact three-dimensional beam theories based on interpolation of strain measures, Comput. Methods Appl. Mech. Eng., 192, 5209-5248, (2003) · Zbl 1054.74065 · doi:10.1016/j.cma.2003.07.008
[41] Zupan, D.; Saje, M., The linearized three-dimensional beam theory of naturally curved and twisted beams: the strain vectors formulation, Comput. Methods Appl. Mech. Eng., 195, 4557-4578, (2006) · Zbl 1123.74034 · doi:10.1016/j.cma.2005.10.002
[42] Češarek, P.; Saje, M.; Zupan, D., Dynamics of flexible beams: finite-element formulation based on interpolation of strain measures, Finite Elem. Anal. Des., 72, 47-63, (2013) · Zbl 1302.74088 · doi:10.1016/j.finel.2013.04.001
[43] Su, W.; Cesnik, C.E.S., Strain-based geometrically nonlinear beam formulation for modeling very flexible aircraft, Int. J. Solids Struct., 48, 2349-2360, (2011) · doi:10.1016/j.ijsolstr.2011.04.012
[44] Schröppel, C.; Wackerfuß, J., Introducing the logarithmic finite element method: a geometrically exact planar Bernoulli beam element, Adv. Model. Simul. Eng. Sci., 3, 1-42, (2016) · doi:10.1186/s40323-016-0074-8
[45] Kirchhoff, G.: Ueber das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes. J. Reine Angew. Math. 56, 285-313 (1859) · ERAM 056.1494cj · doi:10.1515/crll.1859.56.285
[46] Dill, E.H., Kirchhoff’s theory of rods, Arch. Hist. Exact Sci., 44, 1-23, (1992) · Zbl 0762.01012 · doi:10.1007/BF00379680
[47] Kaji, S.; Ochiai, H., A concise parametrization of affine transformation, SIAM J. Imaging Sci., 9, 1355-1373, (2016) · Zbl 1381.94020 · doi:10.1137/16M1056936
[48] Romero, I., A comparison of finite elements for nonlinear beams: the absolute nodal coordinate and geometrically exact formulations, Multibody Syst. Dyn., 20, 51-68, (2008) · Zbl 1142.74046 · doi:10.1007/s11044-008-9105-7
[49] Bauchau, O.A.; Han, S., Interpolation of rotation and motion, Multibody Syst. Dyn., 31, 339-370, (2014) · Zbl 1293.74404 · doi:10.1007/s11044-013-9365-8
[50] Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, 2nd edn. Springer Series in Computational Mathematics, vol. 31. Springer, Berlin (2006) · Zbl 1094.65125
[51] Kress, R.: Linear Integral Equations, 3rd edn. Applied Mathematical Sciences, vol. 82. Springer, New York (2014) · Zbl 1328.45001 · doi:10.1007/978-1-4614-9593-2
[52] Tricomi, F.G.: Integral Equations. Dover, New York (1985)
[53] Hasimoto, H., A soliton on a vortex filament, J. Fluid Mech., 51, 477-485, (1972) · Zbl 0237.76010 · doi:10.1017/S0022112072002307
[54] Efimov, N.V., Some problems in the theory of space curves, Usp. Mat. Nauk, 2, 193-194, (1947)
[55] Fenchel, W., On the differential geometry of closed space curves, Bull. Am. Math. Soc., 57, 44-54, (1951) · Zbl 0042.40006 · doi:10.1090/S0002-9904-1951-09440-9
[56] Schmeidler, W.: Notwendige und hinreichende Bedingungen dafür, dass eine Raumkurve geschlossen ist. Arch. Math. (Basel) 7, 384-385 (1956) · Zbl 0071.37303 · doi:10.1007/BF01900692
[57] Hwang, C.C., A differential-geometric criterion for a space curve to be closed, Proc. Am. Math. Soc., 83, 357-361, (1981) · Zbl 0477.53001 · doi:10.1090/S0002-9939-1981-0624931-0
[58] Langer, J.; Singer, D.A., Lagrangian aspects of the Kirchhoff elastic rod, SIAM Rev., 38, 605-618, (1996) · Zbl 0859.73040 · doi:10.1137/S0036144593253290
[59] Goriely, A.; Tabor, M., The nonlinear dynamics of filaments, Nonlinear Dyn., 21, 101-133, (2000) · Zbl 0985.74030 · doi:10.1023/A:1008366526875
[60] Swigon, D.; Benham, C.J. (ed.); Harvey, S. (ed.); Olson, W.K. (ed.); Sumners, D. (ed.); Swigon, D. (ed.), The mathematics of DNA structure, mechanics, and dynamics, No. 150, 293-320, (2009), New York · doi:10.1007/978-1-4419-0670-0_14
[61] Kawakubo, S., Kirchhoff elastic rods in three-dimensional space forms, J. Math. Soc. Jpn., 60, 551-582, (2008) · Zbl 1142.58012 · doi:10.2969/jmsj/06020551
[62] Domokos, G., A group-theoretic approach to the geometry of elastic rings, J. Nonlinear Sci., 5, 453-478, (1995) · Zbl 0857.73015 · doi:10.1007/BF01209022
[63] Domokos, G.; Healey, T., Hidden symmetry of global solutions in twisted elastic rings, J. Nonlinear Sci., 11, 47-67, (2001) · Zbl 1033.74026 · doi:10.1007/s003320010008
[64] Starostin, E.L.; Heijden, G.H.M., Characterisation of cylindrical curves, Monatshefte Math., 176, 481-491, (2015) · Zbl 1311.53005 · doi:10.1007/s00605-014-0705-4
[65] Bohr, J.; Markvorsen, S., Autorotation, Phys. Scr., 91, (2016) · Zbl 0545.76062 · doi:10.1088/0031-8949/91/2/023005
[66] Silva, L.C.B., Moving frames and the characterization of curves that Lie on a surface, J. Geom., (2017) · Zbl 1381.53016 · doi:10.1007/s00022-017-0398-7
[67] Honda, S.; Takahashi, M., Framed curves in the Euclidean space, Adv. Geom., 16, 265-276, (2016) · Zbl 1386.58021 · doi:10.1515/advgeom-2015-0035
[68] Randrup, T.; Røgen, P., Sides of the Möbius strip, Arch. Math. (Basel), 66, 511-521, (1996) · Zbl 0864.53002 · doi:10.1007/BF01268871
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.