×

Finite-time blow-up for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. (English) Zbl 1394.35253

The authors study energy solutions to the quasilinear degenerate chemotaxis system \[ \begin{cases} u_t = \Delta u^m - \nabla \cdot (u^{q-1} \nabla v), \quad & (x,t) \in \Omega \times (0,\infty), \\ v_t = \Delta v -v +u, \quad & (x,t) \in \Omega \times (0,\infty), \end{cases} \] endowed with homogeneous Neumann boundary conditions and nonnegative initial data \(u_0 \in L^\infty(\Omega)\), \(v_0 \in W^{1,\infty} (\Omega)\) such that \(\nabla u_0^m \in L^2(\Omega)\). Here \(\Omega := B_R(0) \subset \mathbb{R}^N\) is a ball, \(N \geq 2\), \(m \geq 1\), and \(q \geq 2\).
It is known that in case of \(q < m + \frac{2}{N}\) any energy solution is global in time and bounded, while for \(q > m + \frac{2}{N}\) there exist blow-up solutions. However, in [S. Ishida and T. Yokota, Discrete Contin. Dyn. Syst., Ser. B 18, No. 10, 2569–2596 (2013; Zbl 1277.35071)] it remained open whether in the latter case the blow-up occurs in finite or infinite time. The authors now answer this open question and prove that in case of \(q > m + \frac{2}{N}\) for any positive initial mass \(M\) there exists a large class of radially symmetric initial data \((u_0,v_0)\) such that \(\int_\Omega u_0 = M\) and the corresponding energy solution blows up in finite time.
As the main ingredient of their proof the author show an appropriate ODI for the Lyapunov functional of the above system. This is done by an extension of the method established by M. Winkler [J. Math. Pures Appl. (9) 100, No. 5, 748–767 (2013; Zbl 1326.35053)] and its variant from the quasilinear non-degenerate case from [T. Cieślak and C. Stinner, J. Differ. Equations 252, No. 10, 5832–5851 (2012; Zbl 1252.35087)] to the quasilinear degenerate case.

MSC:

35K65 Degenerate parabolic equations
35B44 Blow-up in context of PDEs
92C17 Cell movement (chemotaxis, etc.)
35Q92 PDEs in connection with biology, chemistry and other natural sciences
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Blanchet, A.; Laurençot, P., The parabolic-parabolic Keller-Segel system with critical diffusion as a gradient flow in \(R^d, d \geq 3\), Comm. Partial Differential Equations, 38, 658-686 (2013) · Zbl 1282.35202
[2] Cao, X., Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discrete Contin. Dyn. Syst., 35, 1891-1904 (2015) · Zbl 1515.35047
[3] Cieślak, T.; Stinner, C., Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differential Equations, 252, 5832-5851 (2012) · Zbl 1252.35087
[4] Cieślak, T.; Stinner, C., Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2, Acta Appl. Math., 129, 135-146 (2014) · Zbl 1295.35123
[5] Friedman, A., Partial Differential Equations (1969), Holt, Rinehart & Winston: Holt, Rinehart & Winston New York · Zbl 0224.35002
[6] T. Hashira, Properties of blow-up solutions and their initial data for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, in preparation.; T. Hashira, Properties of blow-up solutions and their initial data for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, in preparation. · Zbl 1394.35253
[7] Herrero, M. A.; Velázquez, J. J.L., A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa Cl. Sci., 24, 633-683 (1997) · Zbl 0904.35037
[8] Hillen, T.; Painter, K. J., A user’s guide to PDE models for chemotaxis, J. Math. Biol., 58, 183-217 (2009) · Zbl 1161.92003
[9] Horstmann, D.; Wang, G., Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12, 159-177 (2001) · Zbl 1017.92006
[10] Ishida, S.; Seki, K.; Yokota, T., Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256, 2993-3010 (2014) · Zbl 1295.35252
[11] Ishida, S.; Yokota, T., Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, J. Differential Equations, 252, 1421-1440 (2012) · Zbl 1237.35093
[12] Ishida, S.; Yokota, T., Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data, J. Differential Equations, 252, 2469-2491 (2012) · Zbl 1241.35118
[13] Ishida, S.; Yokota, T., Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, Discrete Contin. Dyn. Syst. Ser. B, 18, 2569-2596 (2013) · Zbl 1277.35071
[14] Keller, E. F.; Segel, L. A., Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26, 399-415 (1970) · Zbl 1170.92306
[15] Laurençot, P.; Mizoguchi, N., Finite time blowup for the parabolic-parabolic Keller-Segel system with critical diffusion, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34, 197-220 (2017) · Zbl 1357.35060
[16] Luckhaus, S.; Sugiyama, Y., Asymptotic profile with the optimal convergence rate for a parabolic equation of chemotaxis in super-critical cases, Indiana Univ. Math. J., 56, 1279-1297 (2007) · Zbl 1118.35006
[17] Mimura, Y., The variational formulation of the fully parabolic Keller-Segel system with degenerate diffusion, J. Differential Equations, 263, 1477-1521 (2017) · Zbl 1439.35296
[18] Nagai, T.; Ogawa, T., Brezis-Merle inequalities and application to the global existence of the Cauchy problem of the Keller-Segel system, Commun. Contemp. Math., 13, 795-812 (2011) · Zbl 1254.35111
[19] Nagai, T.; Senba, T.; Yoshida, K., Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40, 411-433 (1997) · Zbl 0901.35104
[20] Ogawa, T., Asymptotic stability of a decaying solution to the Keller-Segel system of degenerate type, Differential Integral Equations, 21, 1113-1154 (2008) · Zbl 1224.35229
[21] Senba, T.; Suzuki, T., A quasi-linear parabolic system of chemotaxis, Abstr. Appl. Anal. (2006) · Zbl 1134.35059
[22] Sugiyama, Y., Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems, Differential Integral Equations, 19, 841-876 (2006) · Zbl 1212.35240
[23] Sugiyama, Y.; Kunii, H., Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term, J. Differential Equations, 227, 333-364 (2006) · Zbl 1102.35046
[24] Tao, Y.; Winkler, M., Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252, 692-715 (2012) · Zbl 1382.35127
[25] Winkler, M., Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248, 2889-2905 (2010) · Zbl 1190.92004
[26] Winkler, M., Does a ‘volume-filling effect’ always prevent chemotactic collapse?, Math. Methods Appl. Sci., 33, 12-24 (2010) · Zbl 1182.35220
[27] Winkler, M., Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100, 748-767 (2013) · Zbl 1326.35053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.