×

Grouped multivariate and functional time series forecasting: an application to annuity pricing. (English) Zbl 1394.62146

Summary: Age-specific mortality rates are often disaggregated by different attributes, such as sex, state, ethnic group and socioeconomic status. In making social policies and pricing annuity at national and subnational levels, it is important not only to forecast mortality accurately, but also to ensure that forecasts at the subnational level add up to the forecasts at the national level. This motivates recent developments in grouped functional time series methods (Shang and Hyndman, in press) to reconcile age-specific mortality forecasts. We extend these grouped functional time series forecasting methods to multivariate time series, and apply them to produce point forecasts of mortality rates at older ages, from which fixed-term annuities for different ages and maturities can be priced. Using the regional age-specific mortality rates in Japan obtained from the Japanese Mortality Database, we investigate the one-step-ahead to 15-step-ahead point-forecast accuracy between the independent and grouped forecasting methods. The grouped forecasting methods are shown not only to be useful for reconciling forecasts of age-specific mortality rates at national and subnational levels, but they are also shown to allow improved forecast accuracy. The improved forecast accuracy of mortality rates is of great interest to the insurance and pension industries for estimating annuity prices, in particular at the level of population subgroups, defined by key factors such as sex, region, and socioeconomic grouping.

MSC:

62P05 Applications of statistics to actuarial sciences and financial mathematics
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62M20 Inference from stochastic processes and prediction
91D20 Mathematical geography and demography
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Athanasopoulos, G.; Hyndman, R. J.; Kourentzes, N.; Petropoulos, F., Forecasting with temporal hierarchies, European J. Oper. Res., (2017), (in press) · Zbl 1403.62154
[2] Aue, A.; Norinho, D. D.; Hörmann, S., On the prediction of stationary functional time series, J. Amer. Statist. Assoc., 110, 509, 378-392, (2015) · Zbl 1373.62462
[3] Bassuk, S. S.; Berkman, L. F.; Amick III, B. C., Socioeconomic status and mortality among the elderly: findings from four US communities, Am. J. Epidemiol., 155, 6, 520-533, (2002)
[4] Bell, W., ARIMA and principal components models in forecasting age-specific fertility, (Cruijsen, H.; Keilman, N., National Population Forecasting in Industrialized Countries, (1992), Swets & Zeitlinger Amsterdam), 177-200
[5] Booth, H., Demographic forecasting: 1980 to 2005 in review, Int. J. Forecast., 22, 3, 547-581, (2006)
[6] Booth, H.; Hyndman, R. J.; Tickle, L.; De Jong, P., Lee-Carter mortality forecasting: A multi-country comparison of variants and extension, Demogr. Res., 15, 9, 289-310, (2006)
[7] Booth, H.; Tickle, L., Mortality modelling and forecasting: A review of methods, Ann. Actuar. Sci., 3, 1-2, 3-43, (2008)
[8] Brouhns, N.; Denuit, M.; Vermunt, J. K., A Poisson log-bilinear regression approach to the construction of projected lifetables, Insurance Math. Econom., 31, 3, 373-393, (2002) · Zbl 1074.62524
[9] Cairns, A. J.G.; Blake, D.; Dowd, K., A two-factor model for stochastic mortality with parameter uncertainty: theory and calibration, J. Risk Insurance, 73, 4, 687-718, (2006)
[10] Cannon, E.; Tonks, I., Annuity Markets, (2008), Oxford University Press Oxford
[11] Chan, W.-S.; Li, J. S.-H.; Li, J., The CBD mortality index: modeling and applications, N. Am. Actuar. J., 18, 1, 38-58, (2014)
[12] Chang, W., Cheng, J., Allaire, J., Xie, Y., McPherson, J., 2017. shiny: Web Application Framework for R. R package version 1.0.0. URL: http://CRAN.R-project.org/package=shiny
[13] Chatfield, C., Calculating interval forecasts, J. Bus. Econom. Statist., 11, 2, 121-135, (1993)
[14] Coulmas, F., Population Decline and Ageing in Japan -the Social Consequences, (2007), Routledge New York
[15] Currie, I. D.; Durban, M.; Eilers, P. H.C., Smoothing and forecasting mortality rates, Stat. Model., 4, 4, 279-298, (2004) · Zbl 1061.62171
[16] D’Amato, V.; Piscopo, G.; Russolillo, M., The mortality of the Italian population: smoothing technique on the Lee-Carter model, Ann. Appl. Stat., 5, 2A, 705-724, (2011) · Zbl 1223.62171
[17] Denuit, M.; Devolder, P.; Goderniaux, A. C., Securitization of longevity risk: pricing survivor bonds with Wang transform in the Lee-Carter framework, J. Risk Insurance, 74, 87-113, (2007)
[18] Dickson, D. C.M.; Hardy, M. R.; Waters, H. R., Actuarial Mathematics for Life Contingent Risks, (2009), Cambridge University Press Cambridge · Zbl 1180.91001
[19] Fung, M.C., Peters, G.W., Shevchenko, P.V., 2015. A state-space estimation of the Lee-Carter mortality model and implications for annuity pricing, in: Weber, T., McPhee, M.J. and Anderssen, R.S. (Eds.), ‘MODSIM2015, 21st International Congress on Modelling and Simulation’, Modelling and Simulation Society of Australia and New Zealand, pp. 952-958, URL: http://www.mssanz.org.au/modsim2015/E1/fung.pdf
[20] Gaille, S. A.; Sherris, M., Causes-of-death mortality: what do we know on their dependence?, N. Am. Actuar. J., 19, 2, 116-128, (2015)
[21] Gneiting, T., Making and evaluating point forecasts, J. Amer. Statist. Assoc., 106, 494, 746-762, (2011) · Zbl 1232.62028
[22] Gneiting, T.; Raftery, A. E., Strictly proper scoring rules, prediction and estimation, J. Amer. Statist. Assoc., 102, 477, 359-378, (2007) · Zbl 1284.62093
[23] Hanewald, K.; Post, T.; Gründl, H., Stochastic mortality, macroeconomic risks and life insurer solvency, Geneva Pap. Risk Insur.—Issues Pract., 36, 458-475, (2011)
[24] Hendry, D. F.; Hubrich, K., Combining disaggregate forecasts or combining disaggregate information to forecast an aggregate, J. Bus. Econom. Statist., 29, 2, 216-227, (2011) · Zbl 1209.91134
[25] Hyndman, R. J.; Ahmed, R. A.; Athanasopoulos, G.; Shang, H. L., Optimal combination forecasts for hierarchical time series, Comput. Statist. Data Anal., 55, 2579-2589, (2011) · Zbl 1464.62095
[26] Hyndman, R. J.; Booth, H.; Yasmeen, F., Coherent mortality forecasting: the product-ratio method with functional time series models, Demography, 50, 1, 261-283, (2013)
[27] Hyndman, R. J.; Khandakar, Y., Automatic time series forecasting: the forecast package for R, J. Stat. Softw., 27, 3, (2008)
[28] Hyndman, R. J.; Lee, A.; Wang, E., Fast computation of reconciled forecasts for hierarchical and grouped time series, Comput. Statist. Data Anal., 97, 16-32, (2016) · Zbl 1468.62086
[29] Hyndman, R. J.; Shang, H. L., Forecasting functional time series (with discussions), J. Korean Stat. Soc., 38, 3, 199-221, (2009)
[30] Hyndman, R. J.; Shang, H. L., Rainbow plots, bagplots, and boxplots for functional data, J. Comput. Graph. Statist., 19, 1, 29-45, (2010)
[31] Hyndman, R. J.; Ullah, M. S., Robust forecasting of mortality and fertility rates: A functional data approach, Comput. Statist. Data Anal., 51, 10, 4942-4956, (2007) · Zbl 1162.62434
[32] Japanese Mortality Database, 2017. National Institute of Population and Social Security Research. Available at http://www.ipss.go.jp/p-toukei/JMD/index-en.html (data downloaded on 18.07.15)
[33] Kahn, K. B., Revisiting top-down versus bottom-up forecasting, J. Bus. Forecast., 17, 2, 14-19, (1998)
[34] Koissia, M. C., Longevity and adjustment in pension annuities, with application to Finland, Scand. Actuar. J., 4, 226-242, (2006) · Zbl 1141.91028
[35] Lee, R. D.; Carter, L. R., Modeling and forecasting US mortality, J. Amer. Statist. Assoc., 87, 419, 659-671, (1992) · Zbl 1351.62186
[36] Li, N.; Lee, R., Coherent mortality forecasts for a group of populations: an extension of the Lee-Carter method, Demography, 42, 3, 575-594, (2005)
[37] Lütkepohl, H., Forecasting contemporaneously aggregated vector ARMA processes, J. Bus. Econom. Statist., 2, 3, 201-214, (1984)
[38] Murray, C. J.L.; Lopez, A. D., Alternative projections of mortality and disability by cause 1990-2020: global burden of disease study, Lancet, 349, 9064, 1498-1504, (1997)
[39] Organisation for Economic Co-operation and Development [OECD], 2013. Pensions at a Glance 2013: OECD and G20 Indicators, Technical Report, OECD Publishing. Retrieved from http://dx.doi.org/10.1787/pension_glance-2013-en
[40] Pitacco, E.; Denuit, M.; Haberman, S.; Olivieri, A., Modelling Longevity Dynamics for Pensions and Annuity Business, (2009), Oxford University Press Oxford · Zbl 1163.91005
[41] R Core Team, 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL: http://www.R-project.org/
[42] Renshaw, A. E.; Haberman, S., Lee-Carter mortality forecasting with age-specific enhancement, Insurance Math. Econom., 33, 2, 255-272, (2003) · Zbl 1103.91371
[43] Renshaw, A. E.; Haberman, S., A cohort-based extension to the Lee-Carter model for mortality reduction factors, Insurance Math. Econom., 38, 3, 556-570, (2006) · Zbl 1168.91418
[44] Shang, H. L., Mortality and life expectancy forecasting for a group of populations in developed countries: A multilevel functional data method, Ann. Appl. Stat., 10, 3, 1639-1672, (2016) · Zbl 1391.62249
[45] Shang, H. L., Bootstrap methods for stationary functional time series, Stat. Comput., (2017), (in press)
[46] Shang, H. L., Reconciling forecasts of infant mortality rates at national and sub-national levels: grouped time-series methods, Popul. Res. Policy Rev., 36, 1, 55-84, (2017)
[47] Shang, H. L.; Booth, H.; Hyndman, R. J., Point and interval forecasts of mortality rates and life expectancy: A comparison of ten principal component methods, Demogr. Res., 25, 5, 173-214, (2011)
[48] Shang, H. L.; Hyndman, R. J., Grouped functional time series forecasting: an application to age-specific mortality rates, J. Comput. Graph. Statist., (2017), (in press)
[49] Singh, G. K.; Azuine, R. E.; Siahpush, M.; Kogan, M. D., All-cause and cause-specific mortality among US youth: socioeconomic and rural-urban disparities and international patterns, J. Urban Health, 90, 3, 388-405, (2013)
[50] Stone, R.; Champernowne, D. G.; Meade, J. E., The precision of national income estimates, Rev. Econom. Stud., 9, 2, 111-125, (1942)
[51] Suzuki, M.; Willcox, B.; Willcox, C., Successful aging: secrets of okinawan longevity, Geriat. Gerontol. Int., 4, s1, S180-S181, (2004)
[52] Takata, H.; Ishii, T.; Suzuki, M.; Sekiguchi, S.; Iri, H., Influence of major histocompatibility complex region genes on human longevity among okinawan-Japanese centenarians and nonagenarians, Lancet, 330, 8563, 824-826, (1987)
[53] Villegas, A. M.; Haberman, S., On the modeling and forecasting of socioeconomic mortality differentials: an application to deprivation and mortality in england, N. Am. Actuar. J., 18, 1, 168-193, (2014)
[54] Wei, W. W.S.; Abraham, B., Forecasting contemporal time series aggregates, Commun. Stat. - Theory Methods, 10, 13, 1335-1344, (1981) · Zbl 0464.62089
[55] Willcox, D. C.; Willcox, B. J.; Shimajiri, S.; Kurechi, S.; Suzuki, M., Aging gracefully: A retrospective analysis of functional status in okinawan centenarians, Am. J. Geriat. Psychiatry, 15, 3, 252-256, (2007)
[56] Yaari, M. E., Uncertain lifetime, life insurance, and the theory of the consumer, Rev. Econom. Stud., 32, 2, 137-150, (1965)
[57] Zivot, E.; Wang, J., Modeling Financial Time Series with S-PLUS, (2006), Springer New York · Zbl 1092.91067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.