zbMATH — the first resource for mathematics

Subspace acceleration for the Crawford number and related eigenvalue optimization problems. (English) Zbl 1394.65031

65F15 Numerical computation of eigenvalues and eigenvectors of matrices
90C26 Nonconvex programming, global optimization
65K05 Numerical mathematical programming methods
Full Text: DOI
[1] N. Aliyev, P. Benner, E. Mengi, and M. Voigt, Large-Scale Computation of \(\mathcal H_{∞}\)-Infinity Norms by a Greedy Subspace Method, Technical report, Max Planck Institute for Dynamics of Complex Technical Systems, 2016. · Zbl 1379.65020
[2] T. Betcke and E. A. Spence, Numerical estimation of coercivity constants for boundary integral operators in acoustic scattering, SIAM J. Numer. Anal., 49 (2011), pp. 1572–1601. · Zbl 1232.65097
[3] S. Bora and R. Srivastava, Distance problems for Hermitian matrix pencils with eigenvalues of definite type, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 53–85. · Zbl 1382.15018
[4] S. H. Cheng and N. J. Higham, The nearest definite pair for the Hermitian generalized eigenvalue problem, Linear Algebra Appl., 302 (1999), pp. 63–76. · Zbl 0947.65042
[5] C. R. Crawford, A stable generalized eigenvalue problem, SIAM J. Numer. Anal., 13 (1976), pp. 854–860. · Zbl 0348.15005
[6] C. De Boor, A Practical Guide to Splines, Vol. 27, Springer, New York, 1978. · Zbl 0406.41003
[7] C.-H. Guo, N. J. Higham, and F. Tisseur, Detecting and solving hyperbolic quadratic eigenvalue problems, SIAM J. Matrix Anal. Appl., 30 (2009), pp. 1593–1613. · Zbl 1180.65042
[8] C.-H. Guo, N. J. Higham, and F. Tisseur, An improved arc algorithm for detecting definite hermitian pairs, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 1131–1151. · Zbl 1202.65054
[9] W. Hackbusch, Hierarchical Matrices: Algorithms and Analysis, Springer, New York, 2015. · Zbl 1336.65041
[10] N. J. Higham, N. Strabic, and V. Sego, Restoring definiteness via shrinking, with an application to correlation matrices with a fixed block, SIAM Rev., 58 (2016), pp. 245–263. · Zbl 1386.15062
[11] N. J. Higham, F. Tisseur, and P. M. Van Dooren, Detecting a definite Hermitian pair and a hyperbolic or elliptic quadratic eigenvalue problem, and associated nearness problems, Linear Algebra Appl., 351 (2002), pp. 455–474. · Zbl 1004.65045
[12] W. Kahan, Spectra of nearly Hermitian matrices, Proc. Amer. Math. Soc., 48 (1975), pp. 11–17. · Zbl 0322.15022
[13] F. Kangal, K. Meerbergen, E. Mengi, and W. Michiels, A Subspace Method for Large Scale Eigenvalue Optimization, preprint, arXiv:1508.04214, 2015. · Zbl 1378.65090
[14] T. Kato, Perturbation Theory for Linear Operators, Vol. 132, Springer, New York, 1995. · Zbl 0836.47009
[15] D. Kressner and B. Vandereycken, Subspace methods for computing the pseudospectral abscissa and the stability radius, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 292–313. · Zbl 1306.65187
[16] P. Lancaster, On eigenvalues of matrices dependent on a parameter, Numer. Math., 6 (1964), pp. 377–387. · Zbl 0133.26201
[17] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia, 1997.
[18] D. Lu and B. Vandereycken, Criss-cross type algorithms for computing the real pseudospectral abscissa, SIAM J. Matrix Anal. Appl., 38 (2017), pp. 891–923. · Zbl 1373.65024
[19] K. Meerbergen, W. Michiels, R. Van Beeumen, and E. Mengi, Computation of pseudospectral abscissa for large-scale nonlinear eigenvalue problems, IMA J. Numer. Anal., 37 (2017), pp. 1831–1863.
[20] E. Mengi and M. L. Overton, Algorithms for the computation of the pseudospectral radius and the numerical radius of a matrix, IMA J. Numer. Anal., 25 (2005), pp. 648–669. · Zbl 1082.65043
[21] W. Rudin, Real and Complex Analysis, Tata McGraw-Hill Education, New York, 1987.
[22] P. Sirković and D. Kressner, Subspace acceleration for large-scale parameter-dependent Hermitian eigenproblems, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 695–718. · Zbl 1382.65104
[23] W. Śmigaj, T. Betcke, S. Arridge, J. Phillips, and M. Schweiger, Solving boundary integral problems with BEM++, ACM Trans. Math. Software, 41 (2015), p. 6. · Zbl 1371.65127
[24] G. W. Stewart, Pertubation bounds for the definite generalized eigenvalue problem, Linear Algebra Appl., 23 (1979), pp. 69–85. · Zbl 0407.15012
[25] G. W. Stewart and J. Sun, Matrix Perturbation Theory, Academic Press, New York, 1990. · Zbl 0706.65013
[26] F. Uhlig, On computing the generalized Crawford number of a matrix, Linear Algebra Appl., 438 (2013), pp. 1923–1935. · Zbl 1261.65044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.