Non-prismatic Timoshenko-like beam model: numerical solution via isogeometric collocation. (English) Zbl 1394.65060

Summary: The present paper combines an effective beam theory with a simple and accurate numerical technique opening the door to the prediction of the structural behavior of planar beams characterized by a continuous variation of the cross-section geometry, that in general deeply influences the stress distribution and, therefore, leads to non-trivial constitutive relations. Accounting for these peculiar aspects, the beam theory is described by a mixed formulation of the problem represented by six linear Ordinary Differential Equations (ODEs) with non-constant coefficients depending on both the cross-section displacements and the internal forces. Due to the ODEs’ complexity, the solution can be typically computed only numerically also for relatively simple geometries, loads, and boundary conditions; however, the use of classical numerical tools for this problem, like a (six-field) mixed finite element approach, might entail several issues (e.g., shear locking, ill-conditioned matrices, etc.). Conversely, the recently proposed isogeometric collocation method, consisting of the direct discretization of the ODEs in strong form and using the higher-continuity properties typical of spline shape functions, allows an equal order approximation of all unknown fields, without affecting the stability of the solution. This makes such an approach simple, robust, efficient, and particularly suitable for solving the system of ODEs governing the non-prismatic beam problem. Several numerical experiments confirm that the proposed mixed isogeometric collocation method is actually cost-effective and able to attain high accuracy.


65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
65D07 Numerical computation using splines
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
Full Text: DOI


[1] G. Balduzzi, G. Hochreiner, J. Füssl, F. Auricchio, Performance evaluation of new straightforward formulas for the serviceability analysis of cambered timber beams, in: Proceedings of the Word Conference on Timber Engineering, 2016.
[2] Vinod, K. G.; Gopalakrishnan, S.; Ganguli, R., Free vibration and wave propagation analisis of uniform and tapered rotating beams using spectrally formulated finite elements, Internat. J. Solids Structures, 44, 5875-5893, (2007) · Zbl 1126.74019
[3] Romano, F.; Zingone, G., Deflections of beams with varying rectangular cross section, J. Eng. Mech., 118, 10, 2128-2134, (1992) · Zbl 0825.73281
[4] Balduzzi, G.; Hochreiner, G.; Füssl, J.; Auricchio, F., Serviceability analysis of non-prismatic timber beams: derivation and validation of new and effective straightforward formulas, Open J. Civ. Eng., 7, 32-62, (2017)
[5] Failla, G.; Impollonia, N., General finite element description for non-uniform and discontinuous beam elements, Arch. Appl. Mech., 82, 1, 43-67, (2012) · Zbl 1293.74412
[6] Friedman, Z.; Kosmatka, J. B., Exact stiffness matrix of a nonuniform beam - II bending of a Timoshenko beam, Comput. Struct., 49, 3, 545-555, (1993) · Zbl 0793.73041
[7] Ramesh Maganti, N. V.; Nalluri, M. R., Flapwise bending vibration analysis of functionally graded rotating double-tapered beams, Int. J. Mech. Mater. Eng., 10, 1, 1-10, (2015)
[8] Shooshtari, A.; Khajavi, R., An efficent procedure to find shape functions and stiffness matrices of nonprismatic Euler-Bernoulli and Timoshenko beam elements, Eur. J. Mech, A/Solids, 29, 826-836, (2010)
[9] Trinh, T. H.; Gan, B. S., Development of consistent shape functions for linearly solid tapered Timoshenko beam, J. Struct. Constr. Eng., 80, 1103-1111, (2015)
[10] Auricchio, F.; Balduzzi, G.; Lovadina, C., The dimensional reduction approach for 2D non-prismatic beam modelling: a solution based on Hellinger-Reissner principle, Internat. J. Solids Structures, 15, 264-276, (2015)
[11] Beltempo, A.; Balduzzi, G.; Alfano, G.; Auricchio, F., Analytical derivation of a general 2D non-prismatic beam model based on the Hellinger-Reissner principle, Eng. Struct., 101, 88-98, (2015)
[12] Hodges, D. H.; Rajagopal, A.; Ho, J. C.; Yu, W., Stress and strain recovery for the in-plane deformation of an isotropic tapered strip-beam, J. Mech. Mater. Struct., 5, 963-975, (2010)
[13] Boley, B. A., On the accuracy of the Bernoulli-Euler theory for beams of variable section, J. Appl. Mech., 30, 374-378, (1963) · Zbl 0127.40501
[14] Balduzzi, G.; Aminbaghai, M.; Sacco, E.; Füssl, J.; Eberhardsteiner, J.; Auricchio, F., Non-prismatic beams: a simple and effective Timoshenko-like model, Internat. J. Solids Structures, 90, 236-250, (2016)
[15] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric analysis: toward integration of CAD and FEA, (2009), John Wiley & Sons · Zbl 1378.65009
[16] Auricchio, F.; Beirao Da Veiga, L.; Hughes, T. J.R.; Reali, A.; Sangalli, G., Isogeometric collocation methods, Math. Models Methods Appl. Sci., 20, 11, 2075-2107, (2010) · Zbl 1226.65091
[17] Reali, A.; Hughes, T. J.R., An introduction to isogeometric collocation methods, (Isogeometric Methods for Numerical Simulation, (2015), Springer), 173-204 · Zbl 1327.74144
[18] Reali, A.; Gomez, H., An isogeometric collocation approach for Bernoulli-Euler beams and Kirchhoff plates, Comput. Methods Appl. Mech. Engrg., 284, 623-636, (2015) · Zbl 1423.74553
[19] Beirao da Veiga, L.; Lovadina, C.; Reali, A., Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods, Comput. Methods Appl. Mech. Engrg., 241, 38-51, (2012) · Zbl 1353.74045
[20] Auricchio, F.; Beirao da Veiga, L.; Kiendl, J.; Lovadina, C.; Reali, A., Locking-free isogeometric collocation methods for spatial Timoshenko rods, Comput. Methods Appl. Mech. Engrg., 263, 113-126, (2013) · Zbl 1286.74057
[21] Weeger, O.; Yeung, S. K.; Dunn, M. L., Isogeometric collocation methods for Cosserat rods and rod structures, Comput. Methods Appl. Mech. Engrg., (2016)
[22] Kiendl, J.; Auricchio, F.; Beirao da Veiga, L.; Lovadina, C.; Reali, A., Isogeometric collocation methods for the Reissner-Mindlin plate problem, Comput. Methods Appl. Mech. Engrg., 284, 489-507, (2015) · Zbl 1425.65199
[23] Kiendl, J.; Auricchio, F.; Hughes, T. J.R.; Reali, A., Single-variable formulations and isogeometric discretizations for shear deformable beams, Comput. Methods Appl. Mech. Engrg., 284, 988-1004, (2015) · Zbl 1423.74492
[24] Timoshenko, S. P.; Young, D. H., Theory of structures, (1965), McGraw-Hill
[25] Balduzzi, G.; Aminbaghai, M.; Auricchio, F.; Füssl, J., Planar Timoshenko-like model for multilayer non-prismatic beams, Int. J. Mech. Mater. Des., (2017), in press
[26] Atkin, E. H., Tapered beams: suggested solutions for some typical aircraft cases, Aircr. Eng., 10, 371-374, (1938)
[27] Cicala, P., Sulle travi di altezza variabile, Atti Reale Accad. Sci. Torino, 74, 392-402, (1939) · JFM 65.0931.01
[28] Timoshenko, S.; Goodier, J. N., Theory of elasticity, (1951), McGraw-Hill · Zbl 0045.26402
[29] Krahula, J. L., Shear formula for beams of variable cross section, AIAA (Amer. Inst. Aeronaut. Astronaut.) J., 13, 1390-1391, (1975)
[30] Bleich, F., Stahlhochbauten, 80-85, (1932), Verlag von Julius Springer, (Chapter 16)
[31] Aminbaghai, M.; Binder, R., Analytische berechnung von voutenstäben nach theorie II. ordnung unter berücksichtigung der M- und Q- verformungen, Bautechnik, 83, 770-776, (2006)
[32] Rubin, H., Analytische berechnung von stäben mit linear veränderlicher Höhe unter berücksichtigung von M-, Q- und N- verformungen, Stahlbau, 68, 112-119, (1999)
[33] Bruhns, O. T., Advanced mechanics of solids, (2003), Springer
[34] Zhang, G.; Alberdi, R.; Khandelwal, K., Analysis of three-dimensional curved beams using isogeometric approach, Eng. Struct., 117, 560-574, (2016)
[35] Gimena, L.; Gimena, F. N.; Gonzaga, P., Structural analysis of a curved beam element defined in global coordinates, Eng. Struct., 30, 3355-3364, (2008)
[36] Auricchio, F.; Balduzzi, G.; Lovadina, C., A new modeling approach for planar beams: finite-element solutions based on mixed variational derivations, J. Mech. Mater. Struct., 5, 771-794, (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.