zbMATH — the first resource for mathematics

Stochastic oscillator with random mass: new type of Brownian motion. (English) Zbl 1395.82181
Summary: The model of a stochastic oscillator subject to additive random force, which includes the Brownian motion, is widely used for analysis of different phenomena in physics, chemistry, biology, economics and social science. As a rule, by the appropriate choice of units one assumes that the particle’s mass is equal to unity. However, for the case of an additional multiplicative random force, the situation is more complicated. As we show in this review article, for the cases of random frequency or random damping, the mass cannot be excluded from the equations of motion, and, for example, besides the restriction of the size of Brownian particle, some restrictions exist also of its mass. In addition to these two types of multiplicative forces, we consider the random mass, which describes, among others, the Brownian motion with adhesion. The fluctuations of mass are modeled as a dichotomous noise, and the first two moments of coordinates show non-monotonic dependence on the parameters of oscillator and noise. In the presence of an additional periodic force an oscillator with random mass is characterized by the stochastic resonance phenomenon, when the appearance of noise increases the input signal.

82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
60H25 Random operators and equations (aspects of stochastic analysis)
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
34F05 Ordinary differential equations and systems with randomness
Full Text: DOI
[1] Gitterman, M., The noisy oscillator: random mass, frequency, damping, (2013), World Scientific
[2] Mazo, R., Brownian motion: fluctuations, dynamics, and applications, (2002), Oxford Science Publication · Zbl 1140.60001
[3] Ishimaru, A., Wave propagation and scattering in random media, (1999), IEEE Press
[4] Kubo, R., (Shuler, K. E., Stochastic Processes in Chemical Physics, (1969), Wiley New York)
[5] Phillips, J. M., The dynamics of the upper Ocean, (1977), Cambridge University Press Cambridge · Zbl 0368.76002
[6] Turelli, M., Theoretical population biology, (1997), Academic New York
[7] Takayasu, H.; Sato, A.-H.; Takayasu, M., Phys. Rev. Lett., 79, 966, (1997)
[8] West, B.; Seshadri, V., J. Geophys. Res., 86, 4293, (1981)
[9] Gitterman, M., Phys. Rev. E, 70, 036116, (2003)
[10] Onuki, A., J. Phys.: Condens. Matter, 9, 6119, (1997)
[11] Chomaz, J. M.; Couairon, A., Phys. Fluids, 11, 2977, (1999)
[12] Hestol, F.; Libchaber, A., Phys. Scr. T, 9, 126, (1985)
[13] Saul, A.; Showalter, K., (Field, R. J.; Burger, M., Oscillations and Traveling Waves in Chemical Systems, (1985), Wiley)
[14] Gitterman, M.; Shapiro, B. Ya.; Shapiro, I., Phys. Rev. B, 65, 174510, (2002)
[15] Gitterman, M.; Gitterman, M.; Klyatskin, V., J. Phys. Conf., Phys. Rev. E, 81, 051139, (2010)
[16] Gitterman, M.; Kessler, D., Phys. Rev. E, 87, 022137, (2013)
[17] Kaminski, T.; Siebrasse, J. P.; Gieselmann, V.; Kappler, J., Glycoconjugate J., 25, 555, (2008)
[18] Sewbawe Abdalla, M., Phys. Rev. A, 34, 4598, (1986)
[19] J. Portman, M. Khasin, S.W. Shaw, M.I. Dykman, Bulletin of the APS, March Meeting, 2010.
[20] Luczka, J.; Hanggi, P.; Gadomski, A., Phys. Rev. E, 51, 5762, (1995)
[21] Lambiotte, R.; Ausloos, M., Phys. Rev. E, 73, 011105, (2005)
[22] Gadomski, A.; Siódmiak, J., Cryst. Res. Technol., 37, 281, (2002)
[23] Gadomski, A.; Siódmiak, J.; Santamarìa-Holek, I.; Rubì, J. M.; Ausloos, M., Acta Phys. Polon. B, 36, 1537, (2005)
[24] Pérez, A. T.; Saville, D.; Soria, C., Europhys. Lett., 55, 425, (2001)
[25] Goldhirsch, I.; Zanetti, G., Phys. Rev. Lett., 70, 1619, (1993)
[26] See I. Temizer, M.Sc. Thesis, University of California, Berkeley, 2003. www.me.berkeley.edu/compmat/ilkerDOCS/MSthesis.pdf.
[27] Benz, W., Spatium, 6, 3, (2000)
[28] Weidenschilling, S. J.; Spaute, D.; Davis, D. R.; Marzari, F.; Ohtsuki, K., Icarus, 128, 429, (1997)
[29] Kaiser, N., Appl. Opt., 41, 3053, (2002)
[30] Nagatani, T., J. Phys. Soc. Japan, 65, 3386, (1996)
[31] Ben-Naim, E.; Krapivsky, P. L.; Redner, S., Phys. Rev. E, 50, 822, (1994)
[32] Ausloos, M.; Ivanova, K., Eur. Phys. J. B, 27, 177, (2002)
[33] Ausloos, M.; Ivanova, K., (Takayasu, H., Proceedings of the Second Nikkei Econophysics Symposium, (2004), Springer-Verlag Berlin)
[34] Cveticanin, J., J. Serb. Soc. Compur. Mech., 6, 56, (2012)
[35] Shapiro, V. E.; Loginov, V. M., Physica A, 91, 563, (1978)
[36] Arnold, L., Random dynamic systems, (1998), Springer Berlin
[37] Leprovost, N.; Aumaitre, S.; Mallick, K., Eur. Phys. J. B, 49, 453, (2006)
[38] Kitahara, K.; Horsthemke, W.; Lefever, R.; Inara, Y., Progr. Theoret. Phys., 64, 1233, (1980)
[39] Benzi, R.; Sutera, S.; Vulpani, A., J. Phys. A, 14, L453, (1981)
[40] Nicolis, G., Tellus, 34, 1, (1982)
[41] Fulinski, A., Phys. Rev. E, 52, 4523, (1995)
[42] Berdichevsky, V.; Gitterman, M., Europhys. Lett., 36, 161, (1996)
[43] Gitterman, M., Physica A, 352, 309, (2005)
[44] Jiang, S.-Q.; Wu, B.; Gu, T.-X., J. Electron. Sci. China, 5, 4, (2007)
[45] S. Jiang, F. Guo, F. Zhow, T.-X. Gu, Communications, Circuits and Systems, ICCCAS, 2007, p. 1044.
[46] Bourret, R. C.; Frish, C. H.; Pouquet, A., Physica A, 65, 303, (1973)
[47] Gitterman, M., Physica A, 391, 5343, (2012)
[48] Roul, S., Programming for mathematicians, 280, (2000), Springer-Verlag Berlin, Section 1013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.