×

Wavelet analysis of near-resonant series RLC circuit with time-dependent forcing frequency. (English) Zbl 1397.78045

Summary: In this work, the results of an analysis of the response of a near-resonant series resistance-inductance-capacitance (RLC) electric circuit with time-dependent forcing frequency by means of a wavelet cross-correlation approach are reported. In particular, it is shown how the wavelet approach enables frequency and time analysis of the circuit response to be carried out simultaneously – this procedure not being possible by Fourier transform, since the frequency is not stationary in time. A series RLC circuit simulation is performed by using the Simulation Program with Integrated Circuits Emphasis (SPICE), in which an oscillatory sinusoidal voltage drive signal of constant amplitude is swept through the resonant condition by progressively increasing the frequency over a 20-second time window, linearly, from 0.32 Hz to 6.69 Hz. It is shown that the wavelet cross-correlation procedure quantifies the common power between the input signal (represented by the electromotive force) and the output signal, which in the present case is a current, highlighting not only which frequencies are present but also when they occur, i.e. providing a simultaneous time-frequency analysis. The work is directed toward graduate Physics, Engineering and Mathematics students, with the main intention of introducing wavelet analysis into their data analysis toolkit.

MSC:

78A55 Technical applications of optics and electromagnetic theory
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
97M50 Physics, astronomy, technology, engineering (aspects of mathematics education)
94C05 Analytic circuit theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Galilei, G., Works of Galileo Galilei, Part 3, vol 15, (1623), Rome: Giacomo Mascardi, Rome
[2] van Enk, S. J., Time-dependent spectrum of a single photon and its positive-operator-valued measure, Phys. Rev. A, 96, (2017) · doi:10.1103/PhysRevA.96.033834
[3] Hernández-Andrés, J.; Romero, J.; Nieves, J. L.; Lee, R. L., Color and spectral analysis of daylight in southern Europe, J. Opt. Soc. Am., 18, 1325-1335, (2001) · doi:10.1364/JOSAA.18.001325
[4] Planinšič, G.; Etkina, E., Bubbles that change the speed of sound, Phys. Teach., 50, 458-460, (2012) · doi:10.1119/1.4758141
[5] Planinšič, G.; Etkina, E., Light emitting diodes: A hidden treasure, Phys. Teach., 52, 94-99, (2014) · doi:10.1119/1.4862113
[6] Lasič, S.; Stepišnik, J.; Mohorič, A.; Serša, I.; Planinšič, G., Autocorrelation spectra of an air-fluidized granular system measured by NMR, Europhys. Lett., 75, 887-893, (2006) · doi:10.1209/epl/i2006-10193-6
[7] Blackwood, O. H.; Kelly, W. C.; Bell, R. M., General Physics, (1973), New York: Wiley, New York
[8] Bloomfield, L., How Things Work: the Physics of Everyday Life, (2010), New York: Wiley, John & Sons, New York
[9] Diefenderfer, A. J.; Holton, B. E., Principles of Electronic Instrumentation, (1994), Philadelphia, PA: Saunders College Pub, Philadelphia, PA
[10] Berlin, H. M.; Getz, F. C., Principles Electronic Instrumentation, (1988), Philadelphia, PA: Merrill, Philadelphia, PA
[11] Douglas, C. G., Physics: Principles with Applications, (1995), Englewood Cliffs, NJ: Prentice Hall, Englewood Cliffs, NJ
[12] Floyd, T. L., Electric Circuits Fundamentals, (1991), Princeton, NJ: Merrill, Princeton, NJ
[13] Thomas, L. F., Electronic Devices, (2005), Hoboken, NJ: Pearson, Hoboken, NJ
[14] Belevitch, V., Summary of the history of circuit theory, Proc. IRE, 50, 848-855, (1962) · doi:10.1109/JRPROC.1962.288301
[15] Foster, R., Academic and theoretical aspects of circuit theory, Proc. IRE, 50, 866-871, (1962) · doi:10.1109/JRPROC.1962.288303
[16] Darlington, S., A survey of network realization techniques, IRE Trans. Circuit Theory, 2, 291-297, (1955) · doi:10.1109/TCT.1955.1085267
[17] Szentirmai, G., Synthesis of multiple-feedback active filters, Bell Syst. Tech. J., 52, 527-555, (1973) · doi:10.1002/j.1538-7305.1973.tb01976.x
[18] Campbell, G. A., Physical theory of the electric wave-filter, Bell Syst. Tech. J., 1, 1-32, (1922) · doi:10.1002/j.1538-7305.1922.tb00386.x
[19] Darlington, S., Some thoughts on the history of circuit theory, IEEE Trans. Circuits Syst., 24, 665-666, (1977) · doi:10.1109/TCS.1977.1084299
[20] Halliday, D.; Resnick, R., Fundamentals of Physics, (1988), New York: Wiley, New York
[21] Halliday, D.; Resnick, R.; Walker, J., Fundamentals of Physics, (1993), New York: Wiley, New York
[22] Horowitz, P.; Hill, W., The Art of Electronics, (1989), Cambridge: Cambridge University Press, Cambridge
[23] Forrest, M. M III, Getting Started in Electronics, (1983), New York: McGraw-Hill, New York
[24] Simpson, R. E., Introductory Electronics for Scientists and Engineers, (1987), Boston, MA: Addison-Wesley, Boston, MA
[25] Tipler, P. A.; Mosca, G., Physics for Scientists and Engineers, (2007), New York: W. H. Freeman, New York
[26] Veleda, D.; Montagne, R.; Araujo, M., Cross-wavelet bias corrected by normalizing scales, J. Atmos. Ocean. Technol., 29, 1401-1408, (2012) · doi:10.1175/JTECH-D-11-00140.1
[27] Banfi, F.; Ferrini, G., Wavelet cross-correlation and phase analysis of a free cantilever subjected to band excitation, Beilstein J. Nanotechnol., 3, 294-300, (2012) · doi:10.3762/bjnano.3.33
[28] Damlamian, A.; Jaffard, S., Wavelet Methods in Mathematical Analysis and Engineering, (2010), Singapore: World Scientific, Singapore
[29] D’avanzo, C.; Tarantino, V.; Bisiacchi, P.; Sparacino, G.; D’avanzo, C., A wavelet methodology for EEG time-frequency analysis in a time discrimination task, Int. J. Bioelectromagn, 11, 185-188, (2009)
[30] Wapenaar, K.; Ghose, R.; Toxopeus, G.; Fokkema, J., The wavelet transform as a tool for geophysical data integration, Integr. Comput. Aided. Eng., 12, 5-23, (2005)
[31] Ramsey, J. B., Studies in Nonlinear Dynamics & Econometrics Wavelets in Economics and Finance: Past and Future Wavelets in Economics and Finance: Past and Future, 6, 1-23, (2002) · Zbl 1080.91570
[32] Magazù, S.; Migliardo, F.; Caccamo, M. T., Innovative wavelet protocols in analyzing elastic incoherent neutron scattering, J. Phys. Chem. B, 116, 9417-9423, (2012) · doi:10.1021/jp3060087
[33] Migliardo, F.; Magazù, S.; Caccamo, M. T., Infrared, Raman and INS studies of poly-ethylene oxide oligomers, J. Mol. Struct., 1048, 261-266, (2013) · doi:10.1016/j.molstruc.2013.05.060
[34] Magazù, S.; Migliardo, F.; Vertessy, B. G.; Caccamo, M. T., Investigations of homologous disaccharides by elastic incoherent neutron scattering and wavelet multiresolution analysis, Chem. Phys., 424, 56-61, (2013) · doi:10.1016/j.chemphys.2013.05.004
[35] Migliardo, F.; Caccamo, M. T.; Magazù, S., Elastic incoherent neutron scatterings wavevector and thermal analysis on glass-forming homologous disaccharides, J. Non. Cryst. Solids, 378, 144-151, (2013) · doi:10.1016/j.jnoncrysol.2013.06.030
[36] Caccamo, M. T.; Calabró, E.; Cannuli, A.; Magazù, S., Wavelet study of meteorological data collected by arduino-weather station: impact on solar energy collection technology, 02004, (2016) · doi:10.1051/matecconf/20165502004
[37] Magazù, S.; Migliardo, F.; Caccamo, M. T., Upgrading of resolution elastic neutron scattering (RENS), Adv. Mater. Sci. Eng., 2013, (2013) · doi:10.1155/2013/695405
[38] Migliardo, F.; Caccamo, M. T.; Magazù, S., Thermal analysis on bioprotectant disaccharides by elastic incoherent neutron scattering, Food Biophys., 9, 99-104, (2014) · doi:10.1007/s11483-013-9322-3
[39] Marchese, N.; Cannuli, A.; Caccamo, M. T.; Pace, C., New generation non-stationary portable neutron generators for biophysical applications of neutron activation analysis, Biochim. Biophys. Acta—Gen. Subj., 1861, 3661-3670, (2017) · doi:10.1016/j.bbagen.2016.05.023
[40] Daubechies, I., The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inf. Theory, 36, 961-1005, (1990) · Zbl 0738.94004 · doi:10.1109/18.57199
[41] Mallat, S. G., A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Mach. Intell., 11, 674-693, (1989) · Zbl 0709.94650 · doi:10.1109/34.192463
[42] Carmona, R. A.; Hwang, W. L.; Torresani, B., Characterization of signals by the ridges of their wavelet transforms, IEEE Trans. Signal Process., 45, 2586-2590, (1997) · doi:10.1109/78.640725
[43] Arfken, G. B.; Weber, H. J., Mathematical Methods for Physicists, (1995), New York: Academic, New York
[44] Körner, T. W., Fourier Analysis, (1988), Cambridge: Cambridge University Press, Cambridge · Zbl 0649.42001
[45] Torrence, C.; Compo, G. P., A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc., 79, 61-78, (1998) · doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
[46] Caccamo, M. T.; Magazù, S., Variable mass pendulum behaviour processed by wavelet analysis, Eur. J. Phys., 38, (2017) · doi:10.1088/0143-0807/38/1/015804
[47] Caccamo, M. T.; Magazù, S., Tagging the oligomer-to-polymer crossover on EG and PEGs by infrared and Raman spectroscopies and by wavelet cross-correlation spectral analysis, Vib. Spectrosc., 85, 222-227, (2016) · doi:10.1016/j.vibspec.2016.04.017
[48] Caccamo, M. T.; Magazù, S., Multiscaling wavelet analysis of infrared and raman data on polyethylene glycol 1000 aqueous solutions, Spectrosc. Lett., 50, 130-136, (2017) · doi:10.1080/00387010.2017.1291524
[49] Caccamo, M. T.; Magazù, S., Ethylene glycol—polyethylene glycol (EG-PEG) mixtures: infrared spectra wavelet cross-correlation analysis, Appl. Spectrosc., 71, 401-409, (2017) · doi:10.1177/0003702816662882
[50] Grinsted, A.; Moore, J. C.; Jevrejeva, S., Application of the cross wavelet transform and wavelet coherence to geophysical times series, Nonlinear Process. Geophys., 11, 561-566, (2004) · doi:10.5194/npg-11-561-2004
[51] Serway, R. A.; Beichner, R. J.; Jewett, J. W., Physics for Scientists and Engineers, (2000), Boston, MA: Brooks/Cole-Thomson Learning, Boston, MA
[52] Caccamo, M. T.; Magazù, S., Thermal restraint on PEG-EG mixtures by FTIR investigations and wavelet cross-correlation analysis, Polym. Testing, 62, 311-318, (2017) · doi:10.1016/j.polymertesting.2017.07.008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.