×

Performance limits and trade-offs in entropy-driven biochemical computers. (English) Zbl 1397.92009

Summary: It is now widely accepted that biochemical reaction networks can perform computations. Examples are kinetic proof reading, gene regulation, or signalling networks. For many of these systems it was found that their computational performance is limited by a trade-off between the metabolic cost, the speed and the accuracy of the computation. In order to gain insight into the origins of these trade-offs, we consider entropy-driven computers as a model of biochemical computation. Using tools from stochastic thermodynamics, we show that entropy-driven computation is subject to a trade-off between accuracy and metabolic cost, but does not involve time-trade-offs. Time trade-offs appear when it is taken into account that the result of the computation needs to be measured in order to be known. We argue that this measurement process, although usually ignored, is a major contributor to the cost of biochemical computation.

MSC:

92-08 Computational methods for problems pertaining to biology
92C40 Biochemistry, molecular biology

Software:

PRISM
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Alon, U.; Surette, M.; Barkai, N.; Leibler, S., Robustness in bacterial chemotaxis, Nature, 397, 168-171, (1999)
[2] Amos, M., Cellular computing, (2004), Oxford University Press · Zbl 1092.68613
[3] Amos, M.; Axmann, I.; Blüthgen, N.; de la Cruz, F.; Jaramillo, A.; Rodriguez-Paton, A.; Simmel, F., Bacterial computing with engineered populations, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373, 2046, 20140218, (2015)
[4] Beard, D.; Liang, S.; Qian, H., Energy balance for analysis of complex metabolic networks., Biophys. J., 83, 1, 79-86, (2002)
[5] Bena, I.; Broeck, C. V.d.; Kawai, R., Jarzynski equality for the jepsen gas, Europhys. Lett. (EPL), 71, 6, 879-885, (2005)
[6] Bennett, C., The thermodynamics of computation. a review, Int. J. Theor. Phys., 21, 12, 905-940, (1982)
[7] Berg, H. C.; Purcell, E. M., Physics of chemoreception., Biophys. J., 20, 2, 193-219, (1977)
[8] Bialek, W.; Setayeshgar, S., Cooperativity, sensitivity, and noise in biochemical signaling, Phys. Rev. Lett., 100, 25, 258101, (2008)
[9] Chu, D., In silico evolution of diauxic growth., BMC Evol. Biol., 15, 211, (2015)
[10] Chu, D., Limited by sensing - a minimal stochastic model of the lag-phase during diauxic growth, J. Theor. Biol., 414, 137-146, (2017) · Zbl 1369.92069
[11] Chu, D.; Barnes, D., The lag-phase during diauxic growth is a trade-off between fast adaptation and high growth rate., Sci. Rep., 6, 25191, (2016)
[12] Chu, D.; Zabet, N.; Hone, A., Optimal parameter settings for information processing in gene regulatory networks, BioSystems, 104, 99-108, (2011)
[13] Davies, P.; Walker, S., The hidden simplicity of biology, Rep. Prog. Phys., 79, 10, 102601, (2016)
[14] Feynman, R. P.; Hey, A., Feynman lectures on computation, (2000), Westview Press
[15] Fluitt, A.; Pienaar, E.; Viljoen, H., Ribosome kinetics and aa-trna competition determine rate and fidelity of peptide synthesis., Comput. Biol. Chem., 31, 5-6, 335-346, (2007) · Zbl 1141.92312
[16] Friedland, A.; Lu, T.; Wang, X.; Shi, D.; Church, G.; Collins, J., Synthetic gene networks that count., Science, 324, 5931, 1199-1202, (2009)
[17] Gillespie, D., A rigorous derivation of the chemical master equation, Physica A, 188, 1-3, 404-425, (1992)
[18] Govern, C.; Wolde, P.t., Optimal resource allocation in cellular sensing systems., Proc. Natl. Acad. Sci. USA, 111, 49, 17486-17491, (2014)
[19] Gregor, T.; Tank, D.; Wieschaus, E.; Bialek, W., Probing the limits to positional information., Cell, 130, 1, 153-164, (2007)
[20] Johansson, M.; Zhang, J.; Ehrenberg, M., Genetic code translation displays a linear trade-off between efficiency and accuracy of trna selection., Proc. Natl. Acad. Sci. USA, 109, 1, 131-136, (2012)
[21] Kaizu, K.; de Ronde, W.; Paijmans, J.; Takahashi, K.; Tostevin, F.; Wolde, P.t., The Berg-purcell limit revisited., Biophys. J., 106, 4, 976-985, (2014)
[22] van Kampen, N., Stochastic processes in physics and chemistry, (2007), Elsevier Amsterdam · Zbl 0511.60038
[23] Kwiatkowska, M.; Norman, G.; Parker, D., PRISM: probabilistic symbolic model checker, (Kemper, P., Proceedings of Tools Session of Aachen 2001 International Multiconference on Measurement, Modelling and Evaluation of Computer-Communication Systems, (2001), University of Dortmund), 7-12 · Zbl 1047.68533
[24] Lakin, M.; Phillips, A., Modelling, simulating and verifying Turing-powerful strand displacement systems, Proceedings of the 17th International Conference on DNA Computing and Molecular Programming, DNA’11, 130-144, (2011), Springer-Verlag Berlin, Heidelberg · Zbl 1347.68139
[25] Lan, G.; Sartori, P.; Neumann, S.; Sourjik, V.; Tu, Y., The energy-speed-accuracy trade-off in sensory adaptation, Nat. Phys., 8, 5, 422-428, (2012)
[26] Landauer, R.; Bennett, C.; Laing, R.; Zurek, W., Maxwells demon, information erasure, and computing, 187-288, (1990), Princeton University Press
[27] Marzen, S.; Garcia, H.; Phillips, R., Statistical mechanics of monod-wyman-changeux (MWC) models, J. Mol. Biol., 425, 9, 1433-1460, (2013)
[28] Mehta, P.; Schwab, D., Energetic costs of cellular computation, Proc. Natl. Acad. Sci. USA, 109, 44, 17978-17982, (2012)
[29] Ninio, J., Kinetic amplification of enzyme discrimination, Biochimie, 57, 5, 587-595, (1975)
[30] Ouldridge, T.; Govern, C.; Wolde, P.t., Thermodynamics of computational copying in biochemical systems, Phys. Rev. X, 7, 2, (2015)
[31] Ouldridge, T.; Wolde, P.t., Fundamental costs in the production and destruction of persistent polymer copies, Phys. Rev. Lett., 118, 15, (2016)
[32] Qian, H.; Beard, D., Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium, Biophys. Chem., 114, 2-3, 213-220, (2005)
[33] Seelig, G.; Soloveichik, D.; Zhang, D. Y.; Winfree, E., Enzyme-free nucleic acid logic circuits, Science, 314, 5805, 1585-1588, (2006)
[34] Seifert, U., Entropy production along a stochastic trajectory and an integral fluctuation theorem, Phys. Rev. Lett., 95, 4, 040602, (2005)
[35] Silva-Rocha, R.; de Lorenzo, V., Implementing an OR-NOT (ORN) logic gate with components of the SOS regulatory network of Escherichia coli., Mol. Biosyst., 7, 8, 2389-2396, (2011)
[36] Sole, R.; Macia, J., Expanding the landscape of biological computation with synthetic multicellular consortia, Nat. Comput., 1-13, (2013)
[37] Tsuda, A. S.; S.; Zauner, K. P., The phi-bot: A robot controlled by a slime mould, 213-232, (2009), Springer-Verlag London
[38] Walker, S.; Kim, H.; Davies, P., The informational architecture of the cell, Phil. Trans. R. Soc. A, 374, 2063, 20150057, (2016)
[39] Zabet, N.; Chu, D., Computational limits to binary genes., J. R. Soc. Interface, 7, 47, 945-954, (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.