Prediction of GABA\(_{\mathrm A}\) receptor proteins using the concept of Chou’s pseudo-amino acid composition and support vector machine. (English) Zbl 1397.92215

Summary: The amino acid gamma-aminobutyric-acid receptors (GABA\(_{\mathrm A}\)Rs) belong to the ligand-gated ion channels (LGICs) superfamily. GABA\(_{\mathrm A}\)Rs are highly diverse in the central nervous system. These channels play a key role in regulating behavior. As a result, the prediction of GABA\(_{\mathrm A}\)Rs from the amino acid sequence would be helpful for research on these receptors. We have developed a method to predict these proteins using the features obtained from Chou’s pseudo-amino acid composition concept and support vector machine as a powerful machine learning approach. The predictor efficiency was assessed by five-fold cross-validation. This method achieved an overall accuracy and Matthew’s correlation coefficient (MCC) of 94.12% and 0.88, respectively. Furthermore, to evaluate the effect and power of each feature, the minimum redundancy and maximum relevance (mRMR) feature selection method was implemented. An interesting finding in this study is the presence of all six characters (hydrophobicity, hydrophilicity, side chain mass, pK1, pK2 and pI) or combination of the characters among the 5 higher ranked features (pk2 and pI, hydrophobicity and mass, pk1, hydrophilicity and mass) obtained from the mRMR feature selection method. The results show a biologically justifiable ranked attributes of pk2 and pI; hydrophobicity, hydrophilicity and mass; mass and pk1; pk2 and mass. Based on our results, using the concept of Chou’s pseudo-amino acid composition and support vector machine is an effective approach for the prediction of GABA\(_{\mathrm A}\)Rs.


92C40 Biochemistry, molecular biology
92D20 Protein sequences, DNA sequences
68T05 Learning and adaptive systems in artificial intelligence
Full Text: DOI


[1] Barnard, E.A.; Skolnick, P.; Olsen, R.W.; Mohler, H.; Sieghart, W.; Biggio, G.; Braestrup, C.; Bateson, A.N.; Langer, S.Z., International union of pharmacology. XV. subtypes of gamma-aminobutyric acid A receptors: classification on the basis of subunit structure and receptor function, Pharmacol. rev., 50, 291-313, (1998)
[2] Benes, F.M., Evidence for altered trisynaptic circuitry in schizophrenic hippocampus, Biol. psychiatry, 46, 589-599, (1999)
[3] Brambilla, P.; Perez, J.; Barale, F.; Schettini, G.; Soares, J.C., Gabaergic dysfunction in mood disorders, Mol. psychiatry, 8, 721-737, 715, (2003)
[4] Brandon, N.; Jovanovic, J.; Moss, S., Multiple roles of protein kinases in the modulation of gamma-aminobutyric acid (A) receptor function and cell surface expression, Pharmacol. theor., 94, 113-122, (2002)
[5] Buxbaum, J.D.; Silverman, J.M.; Smith, C.J.; Greenberg, D.A.; Kilifarski, M.; Reichert, J.; Cook, E.H.; Fang, Y.; Song, C.Y.; Vitale, R., Association between a GABRB3 polymorphism and autism, Mol. psychiatry, 7, 311-316, (2002)
[6] Chang, C.C., Lin, C.J., 2001. LIBSVM: A Library for Support Vector Machines 〈http://www.csie.ntu.edu.tw/cjlin/libsvm〉.
[7] Chen, C.; Chen, L.; Zou, X.; Cai, P., Prediction of protein secondary structure content by using the concept of Chou’s pseudo amino acid composition and support vector machine, Protein pept. lett., 16, 27-31, (2009)
[8] Chen, C.C.; Hwang, J.K.; Yang, J.M., PS)2-v2: template-based protein structure prediction server, BMC bioinf., 10, 366, (2009)
[9] Chen, H.; Kihara, D., Effect of using suboptimal alignments in template-based protein structure prediction, Proteins, 79, 315-334, (2011)
[10] Coeytaux, K.; Poupon, A., Prediction of unfolded segments in a protein sequence based on amino acid composition, Bioinformatics, 21, 1891-1900, (2005)
[11] Chou, K.C., Prediction of protein cellular attributes using pseudo-amino acid composition, Proteins, 43, 246-255, (2001)
[12] Chou, K.C., Modelling extracellular domains of GABA-A receptors: subtypes 1, 2, 3, and 5, Biochem. biophys. res. commun., 316, 636-642, (2004)
[13] Chou, K.C., Structural bioinformatics and its impact to biomedical science, Curr. med. chem., 11, 2105-2134, (2004)
[14] Chou, K.C., Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes, Bioinformatics, 21, 10-19, (2005)
[15] Chou, K.C., Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology, Curr. proteomics, 6, 262-274, (2009)
[16] Chou, K.C.; Shen, H.B., A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: euk-mploc 2.0, Plos one, 5, e9931, (2010)
[17] Chou, K.C.; Shen, H.B., Plant-mploc: a top-down strategy to augment the power for predicting plant protein subcellular localization, Plos one, 5, e11335, (2010)
[18] Darlison, M.G.; Pahal, I.; Thode, C., Consequences of the evolution of the GABA(A) receptor gene family, Cell mol. neurobiol., 25, 607-624, (2005)
[19] Davies, D.L.; Alkana, R.L., Benzodiazepine agonist and inverse agonist coupling in GABAA receptors antagonized by increased atmospheric pressure, Eur. J. pharmacol., 469, 37-45, (2003)
[20] DeLorey, T.M.; Olsen, R.W., GABA and epileptogenesis: comparing gabrb3 gene-deficient mice with angelman syndrome in man, Epilepsy res., 36, 123-132, (1999)
[21] Ding, C.; Peng, H., Minimum redundancy feature selection from microarray gene expression data, J. bioinf. comput. biol., 3, 185-205, (2005)
[22] Ding, H.; Luo, L.; Lin, H., Prediction of cell wall lytic enzymes using Chou’s amphiphilic pseudo amino acid composition, Protein pept. lett., 16, 351-355, (2009)
[23] Esmaeili, M.; Mohabatkar, H.; Mohsenzadeh, S., Using the concept of Chou’s pseudo amino acid composition for risk type prediction of human papillomaviruses, J. theor. biol, 263, 2, 203-209, (2010) · Zbl 1406.92455
[24] Fang, Y.; Guo, Y.; Feng, Y.; Li, M., Predicting DNA-binding proteins: approached from Chou’s pseudo amino acid composition and other specific sequence features, 34, 103-109, (2008)
[25] Gu, Q.; Ding, Y.S.; Zhang, T.L., Prediction of G-protein-coupled receptor classes in low homology using Chou’s pseudo amino acid composition with approximate entropy and hydrophobicity patterns, Protein pept. lett., 17, 559-567, (2010)
[26] Jiang, X.; Wei, R.; Zhang, T.; Gu, Q., Using the concept of Chou’s pseudo amino acid composition to predict apoptosis proteins subcellular location: an approach by approximate entropy, Protein pept. lett, 15, 392-396, (2008)
[27] Jiang, X.; Wei, R.; Zhao, Y.; Zhang, T., Using Chou’s pseudo amino acid composition based on approximate entropy and an ensemble of adaboost classifiers to predict protein subnuclear location, Amino acids, 34, 669-675, (2008)
[28] Johnston, G.A., GABAA receptor pharmacology, Pharmacol. ther., 69, 173-198, (1996)
[29] Johnston, G.A.R., GABA(C) receptors: relatively simple transmitter-gated ion channels?, Trends pharmacol. sci., 17, 319-323, (1996)
[30] Johnston, G.A.R., GABA(A) receptor pharmacology, Pharmacol. ther., 69, 173-198, (1996)
[31] Korpi, E.R.; Grunder, G.; Luddens, H., Drug interactions at GABA(A) receptors, Prog. neurobiol., 67, 113-159, (2002)
[32] Lancel, M., Role of GABAA receptors in the regulation of sleep: initial sleep responses to peripherally administered modulators and agonists, Sleep, 22, 33-42, (1999)
[33] Lee, S.; Lee, B.C.; Kim, D., Prediction of protein secondary structure content using amino acid composition and evolutionary information, Proteins, 62, 1107-1114, (2006)
[34] Li, F.M.; Li, Q.Z., Predicting protein subcellular location using Chou’s pseudo amino acid composition and improved hybrid approach, Protein pept. lett., 15, 612-616, (2008)
[35] Li, Z.C.; Zhou, X.B.; Dai, Z.; Zou, X.Y., Prediction of protein structural classes by Chou’s pseudo amino acid composition: approached using continuous wavelet transform and principal component analysis, Amino acids, 37, 415-425, (2009)
[36] Lin, H., The modified Mahalanobis discriminant for predicting outer membrane proteins by using Chou’s pseudo amino acid composition, J. theor. biol., 252, 350-356, (2008) · Zbl 1398.92076
[37] Lin, H.; Ding, H.; Guo, F.B.; Zhang, A.Y.; Huang, J., Predicting subcellular localization of mycobacterial proteins by using Chou’s pseudo amino acid composition, Protein pept. lett., 15, 739-744, (2008)
[38] Lin, H.; Wang, H.; Ding, H.; Chen, Y.L.; Li, Q.Z., Prediction of subcellular localization of apoptosis protein using Chou’s pseudo amino acid composition, Acta biotheor., 57, 321-330, (2009)
[39] Liu, Y.C.; Yang, M.H.; Lin, W.L.; Huang, C.K.; Oyang, Y.J., A sequence-based hybrid predictor for identifying conformationally ambivalent regions in proteins, BMC genom., 3, 10, Suppl. 3, S22, (2009)
[40] Mihic, S.J.; Harris, R.A., GABA and the GABAA receptor, Alcohol health res. world, 21, 127-131, (1997)
[41] Mohabatkar, H., Prediction of cyclin proteins using Chou’s pseudo amino acid composition, Protein pept. lett., 17, 1207-1214, (2010)
[42] Moss, S.J.; Smart, T.G., Constructing inhibitory synapses, Nat. rev. neurosci., 2, 240-250, (2001)
[43] Olsen, R.W.; Tobin, A.J., Molecular-biology of gaba-a receptors, Faseb j., 4, 1469-1480, (1990)
[44] Olsen, R.W.; Tobin, A.J., Molecular biology of GABAA receptors, Faseb j, 4, 1469-1480, (1990)
[45] Qiu, J.D.; Huang, J.H.; Liang, R.P.; Lu, X.Q., Prediction of G-protein-coupled receptor classes based on the concept of Chou’s pseudo amino acid composition: an approach from discrete wavelet transform, Anal. biochem., 390, 68-73, (2009)
[46] Qiu, J.D.; Huang, J.H.; Shi, S.P.; Liang, R.P., Using the concept of Chou’s pseudo amino acid composition to predict enzyme family classes: an approach with support vector machine based on discrete wavelet transform, Protein pept. lett, 17, 715-722, (2010)
[47] Sahu, S.S.; Panda, G., A novel feature representation method based on Chou’s pseudo amino acid composition for protein structural class prediction, Comput. biol. chem., 34, 320-327, (2010) · Zbl 1403.92221
[48] ()
[49] Schofield, P.R.; Darlison, M.G.; Fujita, N.; Burt, D.R.; Stephenson, F.A.; Rodriguez, H.; Rhee, L.M.; Ramachandran, J.; Reale, V.; Glencorse, T.A., Sequence and functional expression of the GABA A receptor shows a ligand-gated receptor super-family, Nature, 328, 221-227, (1987)
[50] Shen, H.B.; Chou, K.C., Pseaac: a flexible web server for generating various kinds of protein pseudo amino acid composition, Anal. biochem., 373, 386-388, (2008)
[51] Shen, H.B.; Chou, K.C., Identification of proteases and their types, Anal. biochem., 385, 153-160, (2009)
[52] Simeone, T.A.; Donevan, S.D.; Rho, J.M., Molecular biology and ontogeny of gamma-aminobutyric acid (GABA) receptors in the Mammalian central nervous system, J. child neurol., 18, 39-48, (2003), (discussion 49)
[53] Sinkkonen, S.T.; Hanna, M.C.; Kirkness, E.F.; Korpi, E.R., GABAA receptor epsilon and theta subunits display unusual structural variation between species and are enriched in the rat locus ceruleus, J. neurosci., 20, 3588-3595, (2000)
[54] Smith, S.S.; Gong, Q.H.; Hsu, F.C.; Markowitz, R.S.; ffrench-Mullen, J.M.; Li, X., GABA(A) receptor alpha4 subunit suppression prevents withdrawal properties of an endogenous steroid, Nature, 392, 926-930, (1998)
[55] Smola, A.J.; Scholkopf, B., Learning with kernels: support vector machines, regularization, optimization, and beyond, (2001), MIT press Cambridge, MA
[56] Steiger, J.L.; Russek, S.J., GABAA receptors: building the bridge between subunit mrnas, their promoters, and cognate transcription factors, Pharmacol. ther., 101, 259-281, (2004)
[57] Vapnik, V.N., The nature of statistical learning theory, (1995), Springer New York · Zbl 0833.62008
[58] Whiting, P.J., The GABA-A receptor gene family: new targets for therapeutic intervention, Neurochem. int., 34, 387-390, (1999)
[59] Whiting, P.J.; Bonnert, T.P.; McKernan, R.M.; Farrar, S.; Le Bourdelles, B.; Heavens, R.P.; Smith, D.W.; Hewson, L.; Rigby, M.R.; Sirinathsinghji, D.J.; Thompson, S.A.; Wafford, K.A., Molecular and functional diversity of the expanding GABA-A receptor gene family, Ann. NY acad. sci., 868, 645-653, (1999)
[60] Xia, J.F.; Han, K.; Huang, D.S., Sequence-based prediction of protein-protein interactions by means of rotation forest and autocorrelation descriptor, Protein pept. lett., 17, 137-145, (2010)
[61] Xiao, X.; Wang, P.; Chou, K.C., GPCR-CA: a cellular automaton image approach for predicting G-protein-coupled receptor functional classes, J. comput. chem., 30, 1414-1423, (2009)
[62] Xiao, X.; Wang, P.; Chou, K.C., Quat-2l: a web server for predicting protein quaternary structural attribute, Mol. divers., 15, 149-155, (2011)
[63] Yu, L.; Guo, Y.; Li, Y.; Li, G.; Li, M.; Luo, J.; Xiong, W.; Qin, W., Secretp: identifying bacterial secreted proteins by fusing new features into Chou’s pseudo-amino acid composition, J. theor. biol., 267, 1, 1-6, (2010) · Zbl 1410.92040
[64] Zeng, Y.H.; Guo, Y.Z.; Xiao, R.Q.; Yang, L.; Yu, L.Z.; Li, M.L., Using the augmented Chou’s pseudo amino acid composition for predicting protein submitochondria locations based on auto covariance approach, J. theor. biol., 259, 366-372, (2009) · Zbl 1402.92193
[65] Zhang, G.Y.; Fang, B.S., Predicting the cofactors of oxidoreductases based on amino acid composition distribution and Chou’s amphiphilic pseudo-amino acid composition, J. theor. biol., 253, 310-315, (2008)
[66] Zhang, G.Y.; Li, H.C.; Gao, J.Q.; Fang, B.S., Predicting lipase types by improved Chou’s pseudo-amino acid composition, Protein pept. lett, 15, 1132-1137, (2008)
[67] Zhang, S.W.; Zhang, Y.L.; Yang, H.F.; Zhao, C.H.; Pan, Q., Using the concept of Chou’s pseudo amino acid composition to predict protein subcellular localization: an approach by incorporating evolutionary information and von Neumann entropies, Amino acids, 34, 565-572, (2008)
[68] Zhang, S.W.; Chen, W.; Yang, F.; Pan, Q., Using Chou’s pseudo amino acid composition to predict protein quaternary structure: a sequence-segmented pseaac approach, Amino acids, 35, 591-598, (2008)
[69] Zhou, X.B.; Chen, C.; Li, Z.C.; Zou, X.Y., Using Chou’s amphiphilic pseudo-amino acid composition and support vector machine for prediction of enzyme subfamily classes, J. theor. biol., 248, 546-551, (2007)
[70] Zou, D.; He, Z.; He, J.; Xia, Y., Supersecondary structure prediction using Chou’s pseudo amino acid composition, J. comput. chem., 32, 271-278, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.