×

zbMATH — the first resource for mathematics

Is structural sensitivity a problem of oversimplified biological models? Insights from nested dynamic energy budget models. (English) Zbl 1397.92706
Summary: Many current issues in ecology require predictions made by mathematical models, which are built on somewhat arbitrary choices. Their consequences are quantified by sensitivity analysis to quantify how changes in model parameters propagate into an uncertainty in model predictions. An extension called structural sensitivity analysis deals with changes in the mathematical description of complex processes like predation. Such processes are described at the population scale by a specific mathematical function taken among similar ones, a choice that can strongly drive model predictions. However, it has only been studied in simple theoretical models. Here, we ask whether structural sensitivity is a problem of oversimplified models. We found in predator-prey models describing chemostat experiments that these models are less structurally sensitive to the choice of a specific functional response if they include mass balance resource dynamics and individual maintenance. Neglecting these processes in an ecological model (for instance by using the well-known logistic growth equation) is not only an inappropriate description of the ecological system, but also a source of more uncertain predictions.

MSC:
92D40 Ecology
92D25 Population dynamics (general)
Software:
CL_MATCONT; MATCONT
PDF BibTeX Cite
Full Text: DOI
References:
[1] Adamson, M. W; Morozov, A. Y, When can we trust our model predictions? unearthing structural sensitivity in biological systems, Proc. R. Soc. Lond. A, 469, 2149, (2012) · Zbl 1371.92057
[2] Aldebert, C.; Nerini, D.; Gauduchon, M.; Poggiale, J. C, Does structural sensitivity alter complexity-stability relationships?, Ecol. Complexity, 28, 104-112, (2016)
[3] Aldebert, C.; Nerini, D.; Gauduchon, M.; Poggiale, J. C, Structural sensitivity and resilience in a predator-prey model with density-dependent mortality, Ecol. Complexity, 28, 163-173, (2016)
[4] Anderson, T. R, Plankton functional type modelling: running before we can walk?, J. Plankton Res., 27, 11, 1073-1081, (2005)
[5] Anderson, T. R, Progress in marine ecosystem modelling and the “unreasonable effectiveness of mathematics”, J. Mar. Syst., 81, 4-11, (2010)
[6] Bazykin, A. D, Nonlinear dynamics of interacting populations, 193, (1998), World Scientific Singapore
[7] Canale, R. P; Lustig, T. D; Kehrberger, P. M; Salo, J. E, Experimental and mathematical modeling studies of protozoan predation on bacteria, Biotechnol. Bioeng., 15, 707-728, (1973)
[8] Cordoleani, F.; Nerini, D.; Gauduchon, M.; Morozov, A.; Poggiale, J. C, Structural sensitivity of biological models revisited, J. Theor. Biol., 283, 82-91, (2011) · Zbl 1397.92565
[9] Demongeot, J.; Françoise, J. P; Nerini, D., From biological and clinical experiments to mathematical models, Philos. Trans. R. Soc. A, 367, 4657-4663, (2009)
[10] Dent, V. E; Bazin, M. J; Saunders, P. T, Behaviour of dictyostelium discoideumamoebae and Escherichia coli grown together in chemostat culture, Arch. Microbiol., 109, 187-194, (1976)
[11] Dhooge, A.; Govaerts, W.; Kuznetsov, Yu. A; Mestrom, W.; Riet, A.; Sautois, B., MATCONT and CL MATCONT: continuation toolboxes in Matlab, (2006)
[12] Droop, M. R, Some thoughs on nutrient limitation in algae, J. Phycol., 9, 264-272, (1973)
[13] Fussmann, G. F; Blasius, B., Community response to enrichment is highly sensitive to model structure, Biol. Lett., 1, 1, 9-12, (2005)
[14] Fussmann, G. F; Ellner, S. P; Shertzer, K. W; Hairston Jr, N. G, Crossing the Hopf bifurcation in a live predator-prey system, Science, 290, 1358-1360, (2000)
[15] Gross, T.; Feudel, U., Generalized models as a universal approach to the analysis of nonlinear dynamical systems, Phys. Rev. E, 73, 1, 016205, (2006)
[16] Gross, T.; Ebenhöh, W.; Feudel, U., Enrichment and foodchain stability: the impact of different forms of predator-prey interaction, J. Theor. Biol., 227, 349-358, (2004)
[17] Gross, T.; Rudolf, L.; Levin, S. A; Dieckmann, U., Generalized models reveal stabilizing factors in food webs, Science, 325, 747-750, (2009)
[18] Holling, C. S, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can., 45, 3-60, (1965)
[19] Ivlev, V. S, Experimental ecology of the feeding of fishes, 302, (1955), Pischepromizdat Moscow
[20] Jassby, A. D; Platt, T., Mathematical formulation of the relationship between photosynthesis and light for phytoplankton, Limnol. Oceanogr., 21, 4, 540-547, (1976)
[21] Jeschke, J. M; Kopp, M.; Tollrian, R., Predator functional response: discriminating between handling and digesting prey, Ecol. Monogr., 72, 1, 95-112, (2002)
[22] Jusup, M.; Sousa, T.; Domingos, T.; Labinac, V.; Marn, N.; Wang, Z.; Klanjišček, T., Physics of metabolic organization, Phys. Life Rev., 20, 1-39, (2017)
[23] Kooi, B., Numerical bifurcation analysis of ecosystems in a spatially homogeneous environment, Acta Biotheor., 51, 3, 189-222, (2003)
[24] Kooi, B. W; Boer, M. P, Bifurcations in ecosystem models and their biological interpretation, Appl. Anal., 77, 29-59, (2001) · Zbl 1068.92506
[25] Kooi, B. W; Kooijman, S., Existence and stability of microbial prey-predator systems, J. Theor. Biol., 170, 75-85, (1994)
[26] Kooi, B. W; Kooijman, S., The transient behaviour of food chains in chemostat, J. Theor. Biol., 170, 87-94, (1994)
[27] Kooi, B. W; Boer, M. P; Kooijman, S., On the use of the logistic equation in models of food chains, Bull. Math. Biol., 60, 231-246, (1998) · Zbl 1053.92520
[28] Kooijman, S., Dynamic energy budget theory for metabolic organisation, 514, (2010), Cambridge University Press Cambridge
[29] Kuehn, C.; Gross, T., Nonlocal generalized models of predator-prey systems, Discrete Continuous Dyn. Syst. B, 18, 3, 693-720, (2013) · Zbl 1271.34054
[30] Kuznetsov, Yu. A, Elements of applied bifurcation theory, 361, (2004), Springer New York
[31] Lafferty, K. D; DeLeo, G.; Briggs, C. J; Dobson, A. P; Kuris, A. M, A general consumer-resource population model, Science, 349, 854-857, (2015)
[32] Lika, K.; Kearney, M. R; Freitas, V.; van der Veer, H. W; van der Meer, J.; Wijsman, J. WM; Pecquerie, L.; Kooijman, S., The “covariation method” for estimating the parameters of the standard dynamic energy budget model i: philosophy and approach, J. Sea Res., 66, 270-277, (2011)
[33] Marr, A. G; Nilson, E. H; Clark, D. J, The maintenance requirement of Escherichia coli, Ann. N. Y. Acad. Sci., 102, 536-548, (1963)
[34] Monod, J., Recherches sur la croissance des cultures bactériennes (researches on the growth of bacterial cultures, in French), 459, (1942), Hermann Paris
[35] Morozov, A., Introduction to the themed issue: uncertainty, sensitivity and predictability in ecology: mathematical challenges and ecological applications, Ecol. Complexity, 32, 131-133, (2017)
[36] Mouquet, N.; Lagadeuc, Y.; Devictor, V.; Doyen, L.; Duputie, A.; Eveillard, D.; Faure, D.; Garnier, E.; Gimenez, O.; Huneman, P.; et al., Predictive ecology in a changing world, J. Appl. Ecol., 52, 1293-1310, (2015)
[37] Myerscough, M. R; Darwen, M. J; Hogarth, W. L, Stability, persistence and structural stability in a classical predator-prey model, Ecol. Modell., 89, 31-42, (1996)
[38] Nisbet, R. M; Cunningham, A.; Gurney, W. S.C, Endogenous metabolism and the stability of microbial prey-predator systems, Biotechnol. Bioeng., 25, 301-306, (1983)
[39] Pennekamp, F.; Adamson, M. W; Petchey, O. L; Poggiale, J. C; Aguiar, M.; Kooi, B. W; Botkin, D. B; DeAngelis, D. L, The practice of prediction: what can ecologists learn from applied, ecology-related fields?, Ecol. Complexity, 32, 156-167, (2017)
[40] Poggiale, J. C; Baklouti, M.; Queguiner, B.; Kooijman, S., How far details are important in ecosystem modelling: the case of multi-limiting nutrients in phytoplankton-zooplankton interactions, Philos. Trans. R. Soc. Lond. B, 365, 3495-3507, (2010)
[41] Rosenzweig, M. L; MacArthur, R. H, Graphical representation and stability conditions of predator-prey interaction, Am. Nat., 97, 895, 209-223, (1963)
[42] Scheffer, M.; Carpenter, S. R; Lenton, T. M; Bascompte, J.; Brock, W. A; Dakos, V.; van de Koppel, J.; van de Leemput, I. A; Levin, S. A; van Nes, E. H; Pascual, M.; Vandermeer, J., Anticipating critical transitions, Science, 338, 344-348, (2012)
[43] Solomon, M. E, The natural control of animal populations, J. Anim. Ecol., 18, 1, 1-35, (1949)
[44] Wood, S. N; Thomas, M. B, Super-sensitivity to structure in biological models, Proc. R. Soc. Lond. B, 266, 565-570, (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.