Kirchberg, E.; Sierakowski, A. Strong pure infiniteness of crossed products. (English) Zbl 1398.46047 Ergodic Theory Dyn. Syst. 38, No. 1, 220-243 (2018). This paper provides sufficient criteria for the reduced crossed product of a separable \(C^*\)-algebra by a discrete exact group to be strongly purely infinite.The notions of pure infiniteness and strong pure infiniteness for general \(C^*\)-algebras have been introduced in [E. Kirchberg and M. Rørdam, Am. J. Math. 122, No. 3, 637–666 (2000; Zbl 0968.46042); Adv. Math. 167, No. 2, 195–264 (2002; Zbl 1030.46075)]. The importance of strong pure infiniteness is due to a remarkable result of the first author: nuclear, separable, stable, strongly purely infinite \(C^*\)-algebras are classified by a \(KK\)-theoretic invariant. The same result is not known if one relaxes strong pure infiniteness to pure infiniteness. On the other hand, it remains an open question whether the notions of pure infiniteness and strong pure infiniteness agree (they do for simple \(C^*\)-algebras).Thus, the results of the paper show that certain (non-simple) \(C^*\)-algebras arising as reduced crossed products are strongly purely infinite, which makes them accessible to \(KK\)-theoretic classification. Further, the paper can be understood as a first step towards determining if reduced crossed products are possible candidates that distinguish the notions of strong pure infiniteness and pure infiniteness. Reviewer: Hannes Thiel (Münster) Cited in 8 Documents MSC: 46L35 Classifications of \(C^*\)-algebras 46L55 Noncommutative dynamical systems 46L80 \(K\)-theory and operator algebras (including cyclic theory) Keywords:action of a discrete group; \(C^\ast\)-algebra; reduced crossed product Citations:Zbl 0968.46042; Zbl 1030.46075 × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] R. J.Archbold and J. S.Spielberg. Topologically free actions and ideals in discrete C*-dynamical systems. Proc. Edinb. Math. Soc. (2)37 (1994), 119-124.10.1017/S0013091500018733 · Zbl 0799.46076 [2] G.Arzhantseva, V.Guba and M.Sapir. Metrics on diagram groups and uniform embeddings in Hilbert space. Comment. Math. Helv.81 (2006), 911-929.10.4171/CMH/80 · Zbl 1166.20031 [3] E.Blanchard and E.Kirchberg. Non-simple purely infinite C*-algebras: the Hausdorff case. J. Funct. Anal.207 (2004), 461-513.10.1016/j.jfa.2003.06.008 · Zbl 1048.46049 [4] L. G.Brown and G. K.Pedersen. C*-algebras of real rank zero. J. Funct. Anal.99 (1991), 131-149.10.1016/0022-1236(91)90056-B · Zbl 0776.46026 [5] J.Cuntz. K-theory for certain C*-algebras. Ann. of Math. (2)113 (1981), 181-197.10.2307/1971137 · Zbl 0437.46060 · doi:10.2307/1971137 [6] G. A.Elliott. Some simple C*-algebras constructed as crossed products with discrete outer automorphism groups. Publ. Res. Inst. Math. Sci.16 (1980), 299-311.10.2977/prims/1195187509 · Zbl 0438.46044 · doi:10.2977/prims/1195187509 [7] R.Exel, M.Laca and J.Quigg. Partial dynamical systems and C*-algebras generated by partial isometries. J. Operator Theory47 (2002), 169-186. · Zbl 1029.46106 [8] S.Haagerup, U.Haagerup and M.Ramirez-Solano. A computational approach to the Thompson group F. Int. J. Algebra Comput.25 (2015), 875-885.10.1142/S0218196715500022 · Zbl 1335.20042 [9] U.Haagerup and G.Picioroaga. New presentations of Thompson’s groups and applications. J. Operator Theory66 (2011), 217-232. · Zbl 1249.22005 [10] P.Jolissaint and G.Robertson. Simple purely infinite C*-algebras and n-filling actions. J. Funct. Anal.175 (2000), 197-213.10.1006/jfan.2000.3608 · Zbl 0993.46033 [11] S.Kawamura and J.Tomiyama. Properties of topological dynamical systems and corresponding C*-algebras. Tokyo J. Math.13 (1990), 251-257.10.3836/tjm/1270132260 · Zbl 0724.54037 [12] E.Kirchberg and M.Rørdam. Non-simple purely infinite C*-algebras. Amer. J. Math.122 (2000), 637-666.10.1353/ajm.2000.0021 · Zbl 0968.46042 [13] E.Kirchberg and M.Rørdam. Infinite non-simple C*-algebras: absorbing the Cuntz algebras 𝓞_∞. Adv. Math.167(2) (2002), 195-264.10.1006/aima.2001.2041 · Zbl 1030.46075 [14] E.Kirchberg and A.Sierakowski. Filling families and strong pure infiniteness. Preprint, 2015, arXiv:1503.08519v2. · Zbl 1398.46047 [15] E.Kirchberg and S.Wassermann. Exact groups and continuous bundles of C*-algebras. Math. Ann.315 (1999), 169-203.10.1007/s002080050364 · Zbl 0946.46054 [16] A.Kishimoto. Outer automorphisms and reduced crossed products of simple C*-algebras. Comm. Math. Phys.81 (1981), 429-435.10.1007/BF01209077 · Zbl 0467.46050 · doi:10.1007/BF01209077 [17] M.Laca and J.Spielberg. Purely infinite C*-algebras from boundary actions of discrete groups. J. reine angew. Math.480 (1996), 125-139. · Zbl 0863.46044 [18] D.Olesen and G. K.Pedersen. Applications of the Connes spectrum to C*-dynamical systems. III. J. Funct. Anal.45 (1982), 357-390.10.1016/0022-1236(82)90011-8 · Zbl 0511.46064 [19] G. K.Pedersen. C*-algebras and Their Automorphism Groups(London Mathematical Society Monographs, 14). Academic Press, London, 1979. · Zbl 0416.46043 [20] J.Renault. The ideal structure of groupoid crossed product C*-algebras, with an appendix by Georges Skandalis. J. Operator Theory25 (1991), 3-36. · Zbl 0786.46050 [21] M.Rørdam, F.Larsen and N.Laustsen. An Introduction to K-theory for C*-algebras(London Mathematical Society Student Texts, 49). Cambridge University Press, Cambridge, 2000. · Zbl 0967.19001 [22] A.Sierakowski. The ideal structure of reduced crossed products. Münster J. Math.3 (2010), 223-248. · Zbl 1378.46050 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.