Probing the effects of dimension-eight operators describing anomalous neutral triple gauge boson interactions at FCC-hh. (English) Zbl 1398.81304

Summary: The effects of dimension-eight operators giving rise to anomalous neutral triple gauge boson interactions of \(Z\gamma\gamma\; \text{and}\; Z\gamma Z\) vertices in \(p p \rightarrow l^- l^+ \gamma\; \text{and}\; p p \rightarrow \nu \overline{\nu} \gamma\) are investigated at 100 TeV center of mass energy of future circular hadron collider (FCC-hh). The transverse momentum of photon, invariant mass of \(l^- l^+ \gamma\) and angular distribution of charged lepton in the rest frame of \(l^- l^+\) and Missing Energy Transverse (MET) are considered in the analysis. The realistic detector effects are also included with Delphes simulation. Sensitivity limits obtained at 95% C.L. for \(C_{\widetilde{B} W} / \Lambda^4\; \text{and}\; C_{B B} / \Lambda^4\) couplings are \([- 0.52; 0.52]([- 0.40; 0.40])\mathrm{TeV}^{-4},\; [- 0.43; 0.43]([- 0.33; 0.33])\; \mathrm{TeV}^{-4}\) in the dilepton+photon channel and \([- 0.11; 0.11]([- 0.084; 0.084])\; \mathrm{TeV}^{-4},\; [- 0.092; 0.092]([- 0.072; 0.072]):\mathrm{TeV}^{-4}\) in the MET+photon channel with \(L_{i n t} = 1\; (3) \mathrm{ab}^{-1}\), respectively.


81V22 Unified quantum theories
81T50 Anomalies in quantum field theory


Full Text: DOI arXiv


[1] Green, D. R.; Meade, P.; Pleier, M. A., Rev. Mod. Phys., 89, 3, (2017)
[2] Dorigo, T., Prog. Part. Nucl. Phys., 100, 211, (2018)
[3] Baur, U.; Rainwater, D. L., Phys. Rev. D, 62, (2000)
[4] Mangano, M. L., Adv. Ser. Dir. High Energy Phys., 26, 231, (2016)
[5] Neubauer, M. S., Annu. Rev. Nucl. Part. Sci., 61, 223, (2011)
[6] Senol, A., Int. J. Mod. Phys. A, 29, 26, (2014)
[7] Frye, C.; Freytsis, M.; Scholtz, J.; Strassler, M. J., J. High Energy Phys., 1603, (2016)
[8] Degrande, C., J. High Energy Phys., 1402, (2014)
[9] Aaboud, M., Phys. Rev. D, 97, (2018)
[10] The ATLAS Collaboration [ATLAS Collaboration], ATLAS-CONF-2018-035.
[11] Barger, V. D.; Baer, H.; Hagiwara, K., Phys. Rev. D, 30, 1513, (1984)
[12] Baur, U.; Berger, E. L., Phys. Rev. D, 47, 4889, (1993)
[13] Baur, U.; Han, T.; Ohnemus, J., Phys. Rev. D, 57, 2823, (1998)
[14] More information is available on the FCC Web site:
[15] Mangano, M., CERN Yellow Report CERN 2017-003-M
[16] Alwall, J., J. High Energy Phys., 1407, (2014)
[17] Alloul, A.; Christensen, N. D.; Degrande, C.; Duhr, C.; Fuks, B., Comput. Phys. Commun., 185, 2250, (2014)
[18] Degrande, C.; Duhr, C.; Fuks, B.; Grellscheid, D.; Mattelaer, O.; Reiter, T., Comput. Phys. Commun., 183, 1201, (2012)
[19] Sjostrand, T.; Mrenna, S.; Skands, P. Z., J. High Energy Phys., 0605, (2006)
[20] de Favereau, J., J. High Energy Phys., 1402, (2014)
[22] Brun, R.; Rademakers, F., Nucl. Instrum. Methods A, 389, 81, (1997)
[23] Contino, R.; Falkowski, A.; Goertz, F.; Grojean, C.; Riva, F., J. High Energy Phys., 1607, (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.