×

Mellin transformation, propagation, and abelian duality spaces. (English) Zbl 1400.32017

Summary: For arbitrary field coefficients \(\mathbb{K}\), we show that \(\mathbb{K}\)-perverse sheaves on a complex affine torus satisfy the so-called propagation package, i.e., the generic vanishing property and the signed Euler characteristic property hold, and the corresponding cohomology jump loci satisfy the propagation property and codimension lower bound. The main ingredient used in the proof is Gabber-Loeser’s Mellin transformation functor for \(\mathbb{K}\)-constructible complexes on a complex affine torus, and the fact that it behaves well with respect to perverse sheaves.
As a concrete topological application of our sheaf-theoretic results, we study homological duality properties of complex algebraic varieties, via abelian duality spaces. We provide new obstructions on abelian duality spaces by showing that their cohomology jump loci satisfy a propagation package. This is then used to prove that complex abelian varieties are the only complex projective manifolds which are abelian duality spaces. We also construct new examples of abelian duality spaces. For example, we show that if a smooth quasi-projective variety \(X\) satisfies a certain Hodge-theoretic condition and it admits a proper semi-small map (e.g., a closed embedding or a finite map) to a complex affine torus, then \(X\) is an abelian duality space.

MSC:

32S60 Stratifications; constructible sheaves; intersection cohomology (complex-analytic aspects)
14F17 Vanishing theorems in algebraic geometry
55N25 Homology with local coefficients, equivariant cohomology
55U30 Duality in applied homological algebra and category theory (aspects of algebraic topology)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Beilinson, A. A.; Bernstein, J.; Deligne, P., Faisceaux pervers, Astérisque, vol. 100, (1982), Soc. Math. Fr. Paris · Zbl 0536.14011
[2] Bhatt, B.; Schnell, S.; Scholze, P., Vanishing theorems for perverse sheaves on abelian varieties, revisited, Selecta Math. (N.S.), 24, 1, 63-84, (2018) · Zbl 1454.14054
[3] Bieri, R.; Eckmann, B., Groups with homological duality generalizing Poincaré duality, Invent. Math., 20, 103-124, (1973) · Zbl 0274.20066
[4] Bruns, W.; Gubeladze, J., Polytopes, rings, and K-theory, Springer Monogr. Math., (2009), Springer Dordrecht · Zbl 1168.13001
[5] Budur, N.; Wang, B., Cohomology jump loci of differential graded Lie algebras, Compos. Math., 151, 8, 1499-1528, (2015) · Zbl 1348.14026
[6] Budur, N.; Wang, B., Absolute sets and the decomposition theorem
[7] de Cataldo, M. A.A.; Migliorini, L., The decomposition theorem, perverse sheaves and the topology of algebraic maps, Bull. Amer. Math. Soc. (N.S.), 46, 4, 535-633, (2009) · Zbl 1181.14001
[8] Chen, J.; Hacon, C., Characterization of abelian varieties, Invent. Math., 143, 2, 435-447, (2001) · Zbl 0996.14020
[9] Denham, G.; Suciu, A., Local systems on arrangements of smooth, complex algebraic hypersurfaces, Forum Math. Sigma, 6, (2018) · Zbl 1400.55002
[10] Denham, G.; Suciu, A.; Yuzvinsky, S., Abelian duality and propagation of resonance, Selecta Math., 23, 4, 2331-2367, (2017) · Zbl 1381.55005
[11] Dimca, A., Sheaves in topology, Universitext, (2004), Springer-Verlag Berlin · Zbl 1043.14003
[12] Eisenbud, D., Commutative algebra. with a view toward algebraic geometry, Grad. Texts in Math., vol. 150, (1995), Springer-Verlag New York · Zbl 0819.13001
[13] Franecki, J.; Kapranov, M., The Gauss map and a noncompact Riemann-Roch formula for constructible sheaves on Semiabelian varieties, Duke Math. J., 104, 1, 171-180, (2000) · Zbl 1021.14016
[14] Gabber, O.; Loeser, F., Faisceaux pervers -adiques sur un tore, Duke Math. J., 83, 3, 501-606, (1996) · Zbl 0896.14009
[15] Green, M.; Lazarsfeld, R., Deformation theory, generic vanishing theorems, and some conjectures of Enriques, catanese and Beauville, Invent. Math., 90, 2, 389-407, (1987) · Zbl 0659.14007
[16] Green, M.; Lazarsfeld, R., Higher obstructions to deforming cohomology groups of line bundles, J. Amer. Math. Soc., 4, 1, 87-103, (1991) · Zbl 0735.14004
[17] Hartshorne, R., Algebraic geometry, Grad. Texts in Math., vol. 52, (1977), Springer-Verlag New York, Heidelberg · Zbl 0367.14001
[18] Iitaka, S., Logarithmic forms of algebraic varieties, J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math., 23, 3, 525-544, (1976) · Zbl 0342.14017
[19] Jost, J.; Zuo, K., Vanishing theorems for \(L^2\)-cohomology on infinite coverings of compact Kähler manifolds and applications in algebraic geometry, Comm. Anal. Geom., 8, 1, 1-30, (2000) · Zbl 0978.32024
[20] Juteau, D.; Mautner, C.; Williamson, G., Parity sheaves, J. Amer. Math. Soc., 27, 4, 1169-1212, (2014) · Zbl 1344.14017
[21] Krämer, T., Perverse sheaves on Semiabelian varieties, Rend. Semin. Mat. Univ. Padova, 132, 83-102, (2014) · Zbl 1317.14037
[22] Krämer, T.; Weissauer, R., Vanishing theorems for constructible sheaves on abelian varieties, J. Algebraic Geom., 24, 3, 531-568, (2015) · Zbl 1338.14023
[23] Lazarsfeld, R., Positivity in algebraic geometry. I. classical setting: line bundles and linear series, Ergeb. Math. Grenzgeb. (3), vol. 48, (2004), Springer-Verlag Berlin · Zbl 1093.14501
[24] Liu, Y.; Maxim, L., Characteristic varieties of hypersurface complements, Adv. Math., 306, 451-493, (2017) · Zbl 1417.14004
[25] Liu, Y.; Maxim, L.; Wang, B., Generic vanishing for semi-abelian varieties and integral Alexander modules
[26] Liu, Y.; Maxim, L.; Wang, B., Perverse sheaves on semi-abelian varieties
[27] Lück, W., \(L^2\)-invariants: theory and applications to geometry and K-theory, Ergeb. Math. Grenzgeb. (3), vol. 44, (2002), Springer-Verlag Berlin · Zbl 1009.55001
[28] Matsumura, H., Commutative ring theory, Cambridge Stud. Adv. Math., vol. 8, (1989), Cambridge University Press Cambridge, Translated from Japanese by M. Reid
[29] Saito, M., Decomposition theorem for proper Kähler morphisms, Tohoku Math. J. (2), 42, 2, 127-147, (1990) · Zbl 0699.14009
[30] Schnell, C., Holonomic \(\mathcal{D}\)-modules on abelian varieties, Publ. Math. Inst. Hautes Études Sci., 121, 1-55, (2015) · Zbl 1386.14079
[31] Schürmann, J., Topology of singular spaces and constructible sheaves, Monogr. Mat., vol. 63, (2003), Birkhäuser Verlag Basel · Zbl 1041.55001
[32] Wang, B., Torsion points on the cohomology jump loci of compact Kähler manifolds, Math. Res. Lett., 23, 2, 545-563, (2016) · Zbl 1345.32019
[33] Wang, B., Algebraic surfaces with zero-dimensional cohomology support locus, Taiwanese J. Math., 22, 3, 607-614, (2018) · Zbl 1409.14078
[34] Weissauer, R., Vanishing theorems for constructible sheaves on abelian varieties over finite fields, Math. Ann., 365, 1-2, 559-578, (2016) · Zbl 1378.14014
[35] Yau, S. T., On Calabi’s conjecture and some new results in algebraic geometry, Proc. Natl. Acad. Sci. USA, 74, 1798-1799, (1977) · Zbl 0355.32028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.