×

Infinite-dimensional Bayesian approach for inverse scattering problems of a fractional Helmholtz equation. (English) Zbl 1400.35196

Authors’ abstract: This paper focuses on a fractional Helmholtz equation describing wave propagation in the attenuating medium. According to physical interpretations, the fractional Helmholtz equation can be divided into loss- and dispersion-dominated fractional Helmholtz equations. In the first part of this work, we establish the well-posedness of the loss-dominated fractional Helmholtz equation (an integer- and fractional-order mixed elliptic equation) for a general wavenumber and prove the Lipschitz continuity of the scattering field with respect to the scatterer. Meanwhile, we only prove the well-posedness of the dispersion-dominated fractional Helmholtz equation (a high-order fractional elliptic equation) for a sufficiently small wavenumber due to its complexity. In the second part, we generalize infinite-dimensional Bayesian inverse theory to allow a part of the noise depends on the target function (the function that needs to be estimated). We also prove that the estimated function tends to be the true function if both the model reduction error and the white noise vanish. We eventually apply our theory to the loss-dominated model with an absorbing boundary condition.

MSC:

35P25 Scattering theory for PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35R11 Fractional partial differential equations
35R30 Inverse problems for PDEs
74J25 Inverse problems for waves in solid mechanics
35Q74 PDEs in connection with mechanics of deformable solids
74G75 Inverse problems in equilibrium solid mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aki, K.; Richards, P. G., Quantitative seismology, (1980), W.H. Freeman & Co (Sd) San Francisco
[2] Bao, G.; Chen, Y.; Ma, F., Regularity and stability for the scattering map of a linearized inverse medium problem, J. Math. Anal. Appl., 247, 1, 255-271, (2000) · Zbl 0960.35108
[3] Bao, G.; Chow, S. N.; Li, P.; Zhou, H., Numerical solution of an inverse medium scattering problem with a stochastic source, Inverse Probl., 26, 7, (2010)
[4] Bao, G.; Li, P., Inverse medium scattering for the Helmholtz equation at fixed frequency, Inverse Probl., 21, 5, 1621, (2005) · Zbl 1086.35120
[5] Bao, G.; Li, P.; Lin, J.; Triki, F., Inverse scattering problems with multi-frequencies, Inverse Probl., 31, 9, (2015) · Zbl 1332.78019
[6] Bissantz, N.; Hohage, T.; Munk, A., Consistency and rates of convergence of nonlinear likhonov regularization with random noise, Inverse Probl., 20, 6, 1773-1789, (2004) · Zbl 1077.65060
[7] Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32, 8, 1245-1260, (2007) · Zbl 1143.26002
[8] Caffarelli, L. A.; Stinga, P. R., Fractional elliptic equations, Caccioppoli estimates and regularity, Ann. Inst. H. Poincaré Anal., 33, 3, 767-807, (2016) · Zbl 1381.35211
[9] Calvetti, D.; Dunlop, A.; Somersalo, E.; Stuart, A., Iterative updating of model error for Bayesian inversion, Inverse Probl., 34, 2, (2018) · Zbl 1386.65056
[10] Caputo, M., Linear models of dissipation whose q is almost frequency independent-II, Geophys. J. Int., 13, 5, 529-539, (2007)
[11] Carcione, J. M., Theory and modeling of constant-q p- and s-waves using fractional time derivatives, Geophysics, 74, 1, 1787-1795, (2009)
[12] Carcione, J. M.; Cavallini, F.; Mainardi, F.; Hanyga, A., Time-domain modeling of constant-q seismic waves using fractional derivatives, Pure Appl. Geophys., 159, 7, 1719-1736, (2005)
[13] Colton, D.; Kress, R., Inverse acoustic and electromagnetic scattering theory, (1992), Springer Berlin, Heidelberg · Zbl 0760.35053
[14] Cotter, S. L.; Dashti, M.; Robinson, J. C.; Stuart, A. M., Bayesian inverse problems for functions and applications to fluid mechanics, Inverse Probl., 25, 11, (2009) · Zbl 1228.35269
[15] Cotter, S. L.; Dashti, M.; Stuart, A. M., Approximation of Bayesian inverse problems for pdes, SIAM J. Numer. Anal., 48, 1, 322-345, (2009) · Zbl 1210.35284
[16] Da Prato, G., An introduction to infinite-dimensional analysis, (2006), Springer Science & Business Media Berlin · Zbl 1109.46001
[17] Dashti, M.; Law, K. J.H.; Stuart, A. M.; Voss, J., MAP estimators and their consistency in Bayesian nonparametric inverse problems, Inverse Probl., 29, 9, (2013) · Zbl 1281.62089
[18] Dashti, M.; Stuart, A. M., The Bayesian approach to inverse problems, (2015), arXiv preprint
[19] M.M. Dunlop, A.M. Stuart, MAP estimators for piecewise continuous inversion, 2015.; M.M. Dunlop, A.M. Stuart, MAP estimators for piecewise continuous inversion, 2015. · Zbl 1354.65112
[20] Duo, S.; Wang, H.; Zhang, Y., A comparative study on nonlocal diffusion operators related to the fractional Laplacian, (2017)
[21] Franklin, J. N., Well-posed stochastic extensions of ill-posed linear problems, J. Math. Anal. Appl., 31, 3, 682-716, (1970) · Zbl 0198.20601
[22] Guan, Q. Y., Integration by parts formula for regional fractional Laplacian, Comm. Math. Phys., 266, 2, 289-329, (2006) · Zbl 1121.60051
[23] Guan, Q. Y.; Ma, Z. M., Boundary problems for fractional Laplacians, Stoch. Dyn., 5, 03, 385-424, (2005) · Zbl 1077.60036
[24] Guan, Q. Y.; Ma, Z. M., Reflected symmetric α-stable processes and regional fractional Laplacian, Probab. Theory Relat., 134, 4, 649-694, (2006) · Zbl 1089.60030
[25] Helin, T.; Burger, M., Maximum a posteriori probability estimates in infinite-dimensional Bayesian inverse problems, Inverse Probl., 31, 8, (2015) · Zbl 1325.62058
[26] Jerison, D.; Kenig, C. E., Unique continuation and absence of positive eigenvalues for schrodinger operators, Ann. Math., 121, 3, 463-488, (1985) · Zbl 0593.35119
[27] Jia, J.; Peng, J.; Gao, J., Bayesian approach to inverse problems for functions with a variable-index Besov prior, Inverse Probl., 32, 8, (2016) · Zbl 1366.62048
[28] Kaipio, J. P.; Somersalo, E., Statistical and computational inverse problems, (2005), Springer Science & Business Media Berlin · Zbl 1068.65022
[29] Kolehmainen, V.; Tarvainen, T.; Arridge, S. R.; Kaipio, J. P., Marginalization of uninteresting distributed parameters in inverse problems-application to diffuse optical tomography, Int. J. Uncertain. Quantif., 1, 1, 1-17, (2011) · Zbl 05949804
[30] Koponen, J.; Huttunen, T.; Tarvainen, T.; Kaipio, J. P., Bayesian approximation error approach in full-wave ultrasound tomography, IEEE Trans. Ultrason. Ferr. R., 61, 10, 1627-1637, (2014)
[31] Kwaśnicki, M., Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal., 20, 1, 7-51, (2017) · Zbl 1375.47038
[32] Lasanen, S., Measurements and infinite-dimensional statistical inverse theory, Proc. Appl. Math. Mech., 7, 1, 1080101-1080102, (2007)
[33] Lasanen, S., Posterior convergence for approximated unknowns in non-Gaussian statistical inverse problems, (2011), arXiv preprint
[34] Lasanen, S., Non-Gaussian statistical inverse problems. part I: posterior distributions, Inverse Probl. Imaging, 6, 2, 215-266, (2012) · Zbl 1263.62041
[35] Lasanen, S., Non-Gaussian statistical inverse problems. part II: posterior convergence for approximated unknowns, Inverse Probl. Imaging, 6, 2, 267-287, (2012) · Zbl 1263.62042
[36] Liao, Q.; Mcmechan, G. A., Multifrequency viscoacoustic modeling and inversion, Geophysics, 61, 5, 1371-1378, (1996)
[37] Mou, C.; Yi, Y., Interior regularity for regional fractional Laplacian, Comm. Math. Phys., 340, 1, 233-251, (2015) · Zbl 1322.47045
[38] Nedelec, J. C., Acoustic and electromagnetic equations—integral representations for harmonic problems, (2001), Springer Science & Business Media Berlin · Zbl 0981.35002
[39] Nezza, E. D.; Palatucci, G.; Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 5, 521-573, (2012) · Zbl 1252.46023
[40] Podlubny, I., Fractional differential equations, (1998), Academic Press California · Zbl 0922.45001
[41] Ros-Oton, X.; Serra, J., The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl. (9), 101, 3, 275-302, (2014) · Zbl 1285.35020
[42] Shen, Y.; Biondi, B.; Clapp, R., Q-model building using one-way wave-equation migration q analysis - part 1: theory and synthetic test, Geophysics, 83, 2, S93-S109, (2018)
[43] Stuart, A. M., Inverse problems: a Bayesian perspective, Acta Numer., 19, 451-559, (May 2010)
[44] Štekl, I.; Pratt, R. G., Accurate viscoelastic modeling by frequency-domain finite differences using rotated operators, Geophysics, 63, 5, 1779-1794, (2012)
[45] Trillos, N. G.; Sanz-Alonso, D., The Bayesian formulation and well-posedness of fractional elliptic inverse problems, Inverse Probl., 33, 6, (2017) · Zbl 1516.35540
[46] Warma, M., The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets, Potential Anal., 42, 2, 499-547, (2014) · Zbl 1307.31022
[47] Zhu, T., Seismic modeling, inversion, and imaging in attenuating media, (July 2014), Standford University United States, PhD thesis
[48] Zhu, T., Time-reverse modelling of acoustic wave propagation in attenuating media, Geophys. J. Int., 197, 1, 483-494, (2014)
[49] Zhu, T.; Carcione, J. M., Theory and modelling of constant-q p- and s-waves using fractional spatial derivatives, Geophys. J. Int., 196, 3, 1787-1795, (2013)
[50] Zhu, T.; Harris, J. M., Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians, Geophysics, 79, 3, T105-T116, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.