zbMATH — the first resource for mathematics

The free Banach lattice generated by a Banach space. (English) Zbl 1400.46015
Summary: The free Banach lattice over a Banach space is introduced and analyzed. This generalizes the concept of free Banach lattice over a set of generators, and allows us to study the Nakano property and the density character of non-degenerate intervals on these spaces, answering some recent questions of B. de Pagter and A. W. Wickstead [Proc. R. Soc. Edinb., Sect. A, Math. 145, No. 1, 105–143 (2015; Zbl 1325.46020)]. Moreover, an example of a Banach lattice which is weakly compactly generated as a lattice but not as a Banach space is exhibited, thus answering a question of J. Diestel.

46B42 Banach lattices
46B50 Compactness in Banach (or normed) spaces
Zbl 1325.46020
Full Text: DOI arXiv
[1] Albiac, F.; Kalton, N. J., Topics in Banach space theory, Graduate Texts in Mathematics, vol. 233, (2006), Springer New York, MR 2192298 · Zbl 1094.46002
[2] Aliprantis, C. D.; Burkinshaw, O., Positive operators, (2006), Springer Dordrecht, Reprint of the 1985 original, MR 2262133 · Zbl 1098.47001
[3] Avilés, A.; Guirao, A. J.; Lajara, S.; Rodríguez, J.; Tradacete, P., Weakly compactly generated Banach lattices, Studia Math., 234, 2, 165-183, (2016), MR 3549188 · Zbl 1365.46019
[4] Baker, K. A., Free vector lattices, Canad. J. Math., 20, 58-66, (1968), MR 0224524 · Zbl 0157.43401
[5] Bleier, R. D., Free vector lattices, Trans. Amer. Math. Soc., 176, 73-87, (1973), MR 0311541 · Zbl 0268.06011
[6] de Pagter, B.; Wickstead, A. W., Free and projective Banach lattices, Proc. Roy. Soc. Edinburgh Sect. A, 145, 1, 105-143, (2015), MR 3304578 · Zbl 1325.46020
[7] Diestel, J.; Jarchow, H.; Tonge, A., Absolutely summing operators, Cambridge Studies in Advanced Mathematics, vol. 43, (1995), Cambridge University Press Cambridge, MR 1342297 · Zbl 0855.47016
[8] Edgar, G. A., Measurability in a Banach space. II, Indiana Univ. Math. J., 28, 4, 559-579, (1979), MR 542944 · Zbl 0418.46034
[9] Fabian, M.; Habala, P.; Hájek, P.; Montesinos, V.; Zizler, V., Banach space theory. the basis for linear and nonlinear analysis, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, (2011), Springer New York, MR 2766381 · Zbl 1229.46001
[10] Nakano, H., Über die charakterisierung des allgemeinen C-raumes, Proc. Imp. Acad. (Tokyo), 17, 301-307, (1941), MR 0014175 · Zbl 0060.26509
[11] Wickstead, A. W., An isomorphic version of Nakano’s characterisation of \(C_0(\operatorname{\Sigma})\), Positivity, 11, 4, 609-615, (2007), MR 2346446 · Zbl 1133.46011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.