zbMATH — the first resource for mathematics

Temporal equilibrium logic: a survey. (English) Zbl 1400.68199
Summary: This paper contains a survey of the main definitions and results obtained to date related to Temporal Equilibrium Logic, a nonmonotonic hybrid approach that combines Equilibrium Logic (the best-known logical characterisation for the stable models semantics of logic programs) with Linear-Time Temporal Logic.

68T27 Logic in artificial intelligence
03B44 Temporal logic
68N17 Logic programming
68T30 Knowledge representation
Coala; STeLP
PDF BibTeX Cite
Full Text: DOI
[1] Aguado, F., Cabalar, P., Diéguez, M., Pérez, G., & Vidal, C. (2012). Paving the way for temporal grounding. In A. Dovier & V. S. Costa (Eds.), Technical Communications of the 28th International Conference on Logic Programming, ICLP 2012, September 4-8, 2012, Budapest, Hungary (pp. 290-300). Saarbrücken: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. · Zbl 1281.68060
[2] Aguado, F., Cabalar, P., Pérez, G., & Vidal, C. (2008). Strongly equivalent temporal logic programs. In S. Hölldobler, C. Lutz, & H. Wansing (Eds.), Logics in Artificial Intelligence, 11th European Conference, JELIA 2008, Dresden, Germany, September 28-October 1, 2008. Proceedings (pp. 8-20). Berlin: Springer. · Zbl 1178.68551
[3] Brewka, G., Eiter, T., & Truszczyński, M. (2011, December). Answer set programming at a glance. Communications of the ACM, 54(12), 92-103.
[4] Büchi, R. (1962). On a decision method in restricted second-order arithmetic. In International Congress on Logic, Method and Philosophical Science 60 (pp. 1-11). Stanford University Press.
[5] Cabalar, P. (2010). A normal form for linear temporal equilibrium logic. In T. Janhunen & Ilkka Niemelä (Eds.), Logics in Artificial Intelligence -12th European Conference, JELIA 2010, Helsinki, Finland, September 13-15, 2010. Proceedings (pp. 64-76). Berlin: Springer. · Zbl 1306.68186
[6] Cabalar, P., & Demri, S. (2011). Automata-based computation of temporal equilibrium models. In G. Vidal (Ed.), Logic-Based Program Synthesis and Transformation - 21st International Symposium, LOPSTR 2011, Odense, Denmark, July 18-20, 2011. Revised selected papers (pp. 57-72). Berlin: Springer. · Zbl 1377.68060
[7] Cabalar, P., & Diéguez, M. (2011). STeLP - a tool for temporal answer set programming. In J. P. Delgrande & W. Faber (Eds.), Logic Programming and Nonmonotonic Reasoning - 11th International Conference, LPNMR 2011, Vancouver, Canada, May 16-19, 2011. Proceedings (pp. 370-375). Berlin: Springer.
[8] Cabalar, P and Ferraris, P. 2007. Propositional theories are strongly equivalent to logic programs. Theory and Practice of Logic Programming, 7: 745-759. · Zbl 1132.68321
[9] Cabalar, P., Pearce, D., & Valverde, A. (2005). Reducing propositional theories in equilibrium logic to logic programs. In C. Bento, A. Cardoso & G. Dias (Eds.), Progress in Artificial Intelligence, 12th Portuguese Conference on Artificial Intelligence, EPIA 2005, Covilhã, Portugal, December 5-8, 2005, proceedings (pp. 4-17). Berlin: Springer.
[10] Cabalar, P., Pearce, D., & Valverde, A. (2007). Minimal logic programs. In V. Dahl & I. Niemelä (Eds.), Logic Programming, 23rd International Conference, ICLP 2007, Porto, Portugal, September 8-13, 2007, proceedings (pp. 104-118). Berlin: Springer. · Zbl 1213.68171
[11] Cabalar, P., & Vega, G. P. (2007). Temporal equilibrium logic: a first approach. In R. Moreno-Díaz, F. Pichler & A. Quesada-Arencibia (Eds.), Computer Aided Systems Theory - EUROCAST 2007, 11th International Conference on Computer Aided Systems Theory, Las Palmas de Gran Canaria, Spain, February 12-16, 2007, revised selected papers (pp. 241-248). Berlin: Springer. · Zbl 1394.03032
[12] Calimeri, F., Ianni, G., Ricca, F., Alviano, M., Bria, A., Catalano, G., ...Veltri, P. (2011). The third answer set programming competition: preliminary report of the system competition track. In J. P. Delgrande & W. Faber (Eds.), Logic Programming and Nonmonotonic Reasoning - 11th International Conference, LPNMR 2011, Vancouver, Canada, May 16-19, 2011. Proceedings (pp. 388-403). Berlin: Springer.
[13] Eiter, T., Faber, W., Leone, N., Pfeifer, G., & Polleres, A. (2002). The DLV\^{}{K} planning system: progress report. In S. Flesca, S. Greco, N. Leone & G. Ianni (Eds.), Logics in Artificial Intelligence, European Conference, JELIA 2002, Cosenza, Italy, September, 23-26, proceedings (pp. 541-544). Berlin: Springer. · Zbl 1014.68872
[14] Fages, F. (1994). Consistency of Clark’s completion and existence of stable models. Methods of Logic in Computer Science, 1, 51-60.
[15] Ferraris, P. (2005). Answer sets for propositional theories. In C. Baral, G. Greco, N. Leone & G. Terracina (Eds.), Logic Programming and Nonmonotonic Reasoning, 8th International Conference, LPNMR 2005, Diamante, Italy, September 5-8, 2005, proceedings (pp. 119-131). Berlin: Springer. · Zbl 1152.68408
[16] Ferraris, P, Lee, J and Lifschitz, V. 2006. A generalization of the Lin-Zhao theorem. Annals of Mathematics and Artificial Intelligence, 47: 79-101. · Zbl 1105.68015
[17] Ferraris, P., Lee, J., & Lifschitz, V. (2007). A new perspective on stable models. In M. M. Veloso (Ed.), IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007 (pp. 372-379). Menlo Park, CA: AAAI Press.
[18] Fisher, M. (1991). A resolution method for temporal logic. In J. Mylopoulos & R. Reiter (Eds.), Proceedings of the 12th International Joint Conference on Artificial Intelligence. Sydney, Australia, August 24-30, 1991 (pp. 99-104). San Francisco, CA: Morgan Kaufmann. · Zbl 0745.68091
[19] Gebser, M., Grote, T., & Schaub, T. (2010). Coala: a compiler from action languages to ASP. In T. Janhunen & I. Niemelä (Eds.), Logics in Artificial Intelligence - 12th European Conference, JELIA 2010, Helsinki, Finland, September 13-15, 2010. Proceedings (pp. 360-364). Berlin: Springer. · Zbl 1306.68014
[20] Gelfond, M., & Inclezan, D. (2009). Yet another modular action language. In M. De Vos & T. Schaub (Eds.), Software Engineering for Answer Set Programming (SEA 2009): Second International Workshop, 14 September 2009, Potsdam, Germany (pp. 64-78). Bath: University of Bath.
[21] Gelfond, M., & Lifschitz, V. (1988). The stable model semantics for logic programming. In R. A. Kowalski & K. A. Bowen (Eds.), Logic Programming, Proceedings of the Fifth International Conference and Symposium, Seattle, Washington, August 15-19, 1988. (pp. 1070-1080). Cambridge, MA: MIT Press.
[22] Gelfond, M and Lifschitz, V. 1998. Action languages. Electronic Transactions on Artificial Intelligence, 2: 193-210.
[23] Heyting, A. (1930). Die formalen regeln der intuitionistischen logik. In Sitzungsberichte der Preussischen Akademie der Wissenschaften, physikalisch-mathematische klasse (pp. 42-56). Berlin: Akademie der Wissenschaften, Berlin. · JFM 56.0823.01
[24] Kamp, H. W. (1986). Tense logic and the theory of linear order. Unpublished Ph.D. thesis, University of California at Los Angeles, USA.
[25] Kautz, H. A. (1986). The logic of persistence. In T. Kehler (Ed.), Proceedings of the 5th National Conference on Artificial Intelligence. Philadelphia, PA, August 11-15, 1986 (Vol. 1, pp. 401-405). San Francisco, CA: Morgan Kaufmann.
[26] Kautz, H. A., & Selman, B. (1992). Planning as satisfiability. In B. Neumann (Ed.), 10th European Conference on Artificial Intelligence, ECAI 92, Vienna, Austria, August 3-7, 1992. Proceedings (pp. 359-363). Chichester: John Wiley & Sons.
[27] Lifschitz, V. (2010). Thirteen definitions of a stable model. In A. Blass, N. Dershowitz & W. Reisig (Eds.), Fields of logic and computation: essays dedicated to Yuri Gurevich on the occasion of his 70th birthday (pp. 488-503). Berlin: Springer. · Zbl 1287.68021
[28] Lifschitz, V, Pearce, D and Valverde, A. 2001. Strongly equivalent logic programs. ACM Transactions on Computational Logic, 2: 526-541. · Zbl 1365.68149
[29] Lifschitz, V., & Turner, H. (1994). Splitting a logic program. In P. Van Hentenryck (Ed.), Logic Programming, proceedings of the Eleventh International Conference on Logic Programming, June 13-18, 1994, Santa Marherita Ligure, Italy (pp. 23-37). Cambridge, MA: MIT Press.
[30] Marek, V. W., & Truszczyński, M. (1999). Stable models and an alternative logic programming paradigm. In K. R. Apt, V. W. Marek, M. Truszczyński & D. S. Warren (Eds.), The logic programming paradigm: a 25-year perspective (pp. 375-398). Berlin: Springer.
[31] McCarthy, J. (1998). Elaboration tolerance. In R. Miller & M. Shanahan (Eds.), Proceedings of the Fourth Symposium on the Logical Formalizations of Commonsense Reasoning, London, UK, 7-9 January, 1998 (pp. 198-217). Menlo Park, CA: AAAI Press.
[32] McCarthy, J and Hayes, P. 1969. Some philosophical problems from the standpoint of artificial intelligence. Machine Intelligence Journal, 4: 463-512. · Zbl 0226.68044
[33] Niemelä, I. 1999. Logic programs with stable model semantics as a constraint programming paradigm. Annals of Mathematics and Artificial Intelligence, 25: 241-273. · Zbl 0940.68018
[34] Pearce, D. (1996). A new logical characterisation of stable models and answer sets. In J. Dix, L. M. Pereira & T. C. Przymusinski (Eds.), Non-Monotonic Extensions of Logic Programming, NMELP ’96, Bad Honnef, Germany, September 5-6, 1996, selected papers (pp. 57-70). Berlin: Springer.
[35] Pearce, D. 2006. Equilibrium logic. Annals of Mathematics and Artificial Intelligence, 47: 3-41. · Zbl 1117.03039
[36] Pnueli, A. (1977). The temporal logic of programs. In 18th Annual Symposium on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October-1 November 1977 (pp. 46-57). Washington, DC: IEEE Society.
[37] Safra, S. (1989). Complexity of automata on infinite objects. Unpublished Ph.D. thesis, The Weizmann Institute of Science, Rehovot, Israel.
[38] Sistla, A, Vardi, M and Wolper, P. 1987. The complementation problem for Büchi automata with applications to temporal logic. Theoretical Computer Science, 49: 217-237. · Zbl 0613.03015
[39] Vardi, M and Wolper, P. 1994. Reasoning about infinite computations. Information and Computation, 115: 1-37. · Zbl 0827.03009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.