zbMATH — the first resource for mathematics

Turing instability in reaction-diffusion models on complex networks. (English) Zbl 1400.92060
Summary: In this paper, the Turing instability in reaction-diffusion models defined on complex networks is studied. Here, we focus on three types of models which generate complex networks, i.e. the Erdos-Rényi, the Watts-Strogatz, and the threshold network models. From analysis of the Laplacian matrices of graphs generated by these models, we numerically reveal that stable and unstable regions of a homogeneous steady state on the parameter space of two diffusion coefficients completely differ, depending on the network architecture. In addition, we theoretically discuss the stable and unstable regions in the cases of regular enhanced ring lattices which include regular circles, and networks generated by the threshold network model when the number of vertices is large enough.

92C15 Developmental biology, pattern formation
05C80 Random graphs (graph-theoretic aspects)
05C82 Small world graphs, complex networks (graph-theoretic aspects)
35R02 PDEs on graphs and networks (ramified or polygonal spaces)
35Q92 PDEs in connection with biology, chemistry and other natural sciences
35K57 Reaction-diffusion equations
Full Text: DOI
[1] Murray, J. D., Mathematical Biology I, II (2003), Springer
[2] Turing, A., The chemical basis of morphogenesis, Philos. Trans. R. Soc. London, Ser. B, 237, 37-72 (1952) · Zbl 1403.92034
[3] Othmer, H. G.; Scriven, L. E., Instability and dynamic pattern in cellular networks, J. Theoret. Biol., 32, 507-537 (1971)
[4] Horsthemke, W.; Lam, K.; Moore, P. K., Network topology and Turing instability in small arrays of diffusively coupled reactors, Phys. Lett. A, 328, 444-451 (2004) · Zbl 1134.34317
[5] Moore, P. K.; Horsthemke, W., Localized patterns in homogeneous networks of diffusively coupled reactors, Physica D, 206, 121-144 (2005) · Zbl 1080.34041
[6] Aly, S.; Farkas, M., Bifurcations in a predator-prey model in patchy environment with diffusion, Nonlinear Anal. RWA, 5, 519-526 (2004) · Zbl 1082.92042
[7] Nakao, H.; Mikhailov, A. S., Turing patterns in network-organized activator-inhibitor systems, Nat. Phys., 6, 544-550 (2010)
[8] Wolfrum, M., The Turing bifurcation in network systems: Collective patterns and single differentiated nodes, Physica D, 241, 1351-1357 (2012) · Zbl 1253.92007
[9] Fernandes, L. D.; Aguiar, M. A.M., Turing patterns and apparent competition in predator-prey food webs on networks, Phys. Rev. E, 86, Article 056203 pp. (2012)
[10] Hata, S.; Nakao, H.; Mikhailov, A., Dispersal-induced destabilization of metapopulations and oscillatory Turing patterns in ecological networks, Sci. Rep., 4, 3585 (2014)
[11] Kouvaris, N. E.; Hata, S.; Diaz-Guilera, A., Pattern formation in multiplex networks, Sci. Rep., 5, 10840 (2015)
[12] Asllani, M.; Challenger, J. D.; Pavone, F. S.; Sacconi, L.; Fanelli, D., The theory of pattern formation on directed networks, Nature Commun., 5, 4517 (2014)
[13] Asllani, M.; Busiello, D. M.; Carletti, T.; Fanelli, D.; Planchon, G., Turing patterns in multiplex networks, Phys. Rev. E, 90, Article 042814 pp. (2014)
[14] Hata, S.; Nakao, H.; Mikhailov, A. S., Global feedback control of Turing patterns in network-organized activator-inhibitor systems, Europhys. Lett. EPL, 98, 64004 (2012)
[15] Asslani, M.; Patti, F. D.; Fanelli, D., Stochastic Turing patterns on a network, Phys. Rev. E, 86, Article 046105 pp. (2012)
[16] Pastor-Satorras, R.; Vespignani, A., Complex networks: Patterns of complexity, Nat. Phys., 6, 480-481 (2010)
[17] Ding, X.; Jiang, T., Spectral distributions of adjacency and Laplacian matrices of random graphs, Ann. Appl. Probab., 20, 2086-2117 (2010) · Zbl 1231.05236
[18] Söderberg, B., General formalism for inhomogeneous random graphs, Phys. Rev. E, 66, Article 066121 pp. (2002)
[19] Masuda, N.; Miwa, H.; Konno, N., Analysis of scale-free networks based on a threshold graph with intrinsic vertex weights, Phys. Rev. E, 70, Article 036124 pp. (2004)
[20] Servedio, V. D.P.; Caldarelli, G.; Buttá, P., Vertex intrinsic fitness: How to produce arbitrary scale-free networks, Phys. Rev. E, 70, Article 056126 pp. (2004)
[21] Ide, Y.; Konno, N.; Masuda, N., Statistical properties of a generalized threshold network model, Methodol. Comput. Appl. Probab., 12, 361-366 (2010) · Zbl 1210.05157
[22] Merris, R., Degree maximal graphs are Laplacian integral, Linear Algebra Appl., 199, 381-389 (1994) · Zbl 0795.05091
[23] Kouvaris, N. E.; Kori, H.; Mikhailov, A., Traveling and pinned fronts in bistable reaction-diffusion system on networks, PLoS One, 7, 1-12 (2012)
[24] Isele, T.; Hartung, B.; Hövel, P.; Schöll, E., Excitation waves on a minimal small-world model, Eur. Phys. J. B, 88, 104 (2015)
[25] Isele, T.; Schöll, E., Effect of small-world topology on wave propagation on networks of excitable elements, New J. Phys., 17, Article 023058 pp. (2015)
[26] Kouvaris, N. E.; Isele, T.; Mikhailov, A. S.; Schöll, E., Propagation failure of excitation waves on tree and random networks, Europhys. Lett. EPL, 106, 68001 (2014)
[27] Aly, S.; Farkas, M., Competition in patchy environment with cross diffusion, Nonlinear Anal. RWA, 5, 589-595 (2004) · Zbl 1074.92033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.