×

One-hit stochastic decline in a mechanochemical model of cytoskeleton-induced neuron death. III: Diffusion pulse death zones. (English) Zbl 1400.92100

Summary: This is the third of three papers in which we study a mathematical model of cytoskeleton-induced neuron death. In the first two papers of this suite [the authors, “One-hit stochastic decline in a mechanochemical model of cytoskeleton-induced neuron death. I: Cell fate arrival times”, ibid. 249, No. 1, 1–17 (2007; doi:10.1016/j.jtbi.2007.05.031); “One-hit stochastic decline in a mechanochemical model of cytoskeleton-induced neuron death. II: Transition state metastability” ibid. 249, No. 1, 18–28 (2007; doi:10.1016/j.jtbi.2007.05.032)], we established that the mean-field limit of our model relates the known patterns of neuron decline to specific scales of cytoskeleton reorganization and cell-cell interaction by diffusible death factors. In the mean-field limit, the spatially variable concentration of diffusing death factor is replaced by a constant average value. Recent empirical advances now permit the actual diffusion of such factors to be followed in intact neuropil. In this paper we therefore extend the model beyond the mean-field limit, to include the diffusion dynamics of death factor bursts released from dying neurons. A range of novel tissue degeneration patterns is observed, for which we confirm and extend the mean-field prediction that sigmoidal patterns of neuron population decay are a principal hallmark of cell death in the presence of death factor release.

MSC:

92C20 Neural biology
92C37 Cell biology
92C10 Biomechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arrasate, M.; Mitra, S.; Schweitzer, E.; Segal, M.; Finkbeiner, S., Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death, Nature, 431, 805-810, (2004)
[2] Barnham, K.; Masters, C.; Bush, A., Neurodegenerative diseases and oxidative stress, Nat. rev. drug discov., 3, 205-214, (2004)
[3] Berg, H., Random walks in biology, (1993), Princeton University Press Princeton, NJ
[4] Boillée, S.; Vande Velde, C.; Cleveland, D., ALS: a disease of motor neurons and their nonneuronal neighbors, Neuron, 52, 39-59, (2006)
[5] Burns, J.; Clarke, G.; Lumsden, C., Photoreceptor death: spatiotemporal patterns arising from one-hit death kinetics and a diffusible cell death factor, Bull. math. biol., 64, 1117-1145, (2002) · Zbl 1334.92110
[6] Cairns, N.; Lee, V.; Trojanowski, J., The cytoskeleton in neurodegenerative disease, J. pathol., 204, 438-449, (2004)
[7] Clarke, G.; Lumsden, C., Heterogeneous cellular environments modulate one-hit neuronal death kinetics, Brain res. bull., 65, 59-67, (2005)
[8] Clarke, G.; Lumsden, C., Scale-free neurodegeneration: cellular heterogeneity and the stretched exponential kinetics of cell death, J. theor. biol., 233, 515-525, (2005) · Zbl 1443.92077
[9] Clarke, G.; Collins, R.; Leavitt, B.; Andrews, D.; Hayden, M.; Lumsden, C.; McInnes, R., A one-hit model of cell death in inherited neuronal degenerations, Nature, 406, 195-199, (2000)
[10] Clarke, G.; Lumsden, C.; McInnes, R., Inherited neurodegenerative diseases: the one-hit model of neurodegeneration, Hum. mol. genet., 10, 2269-2275, (2001)
[11] Cookson, M., The biochemistry of Parkinson’s disease, Annu. rev. biochem., 74, 29-52, (2005)
[12] Curtin, J.; Donovan, M.; Cotter, T., Regulation and measurement of oxidative stress in apoptosis, J. immunol. methods, 265, 49-72, (2002)
[13] ()
[14] Feinstein, S.; Wilson, L., Inability of tau to properly regulate neuronal microtubule dynamics: a loss-of-function mechanism by which tau might mediate neuronal cell death, Biochim. biophys. acta, 1739, 268-279, (2005)
[15] Friedlander, R., Apoptosis and caspases in neurodegenerative diseases, N. engl. J. med., 348, 1365-1375, (2003)
[16] Fulga, T.; Elson-Schwab, I.; Khurana, V.; Steinhilb, M.; Spires, T.; Hyman, B.; Feany, M., Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo, Nat. cell biol., 9, 139-148, (2007)
[17] Gourlay, C.; Ayscough, K., The actin cytoskeleton: a key regulator of apoptosis and ageing?, Nat. rev. mol. cell biol., 6, 583-589, (2005)
[18] Halliwell, B., Oxidative stress and neurodegeneration: where are we now?, J. neurochem., 97, 1634-1658, (2006)
[19] Halliwell, B.; Gutteridge, J., Free radicals in biology and medicine, (2007), Oxford University Press New York
[20] Hayashi, T.; Su, T.-P., Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate \(\operatorname{Ca}^{2 +}\) signaling and cell survival, Cell, 131, 596-610, (2007)
[21] Iwase, H.; Robin, E.; Guzy, R.; Mungai, P.; Vanden Hoeck, T.; Chandel, N.; Levraut, J.; Schumacker, P., Nitric oxide during ischemia attentuates oxidant stress and cell death during ischemia and reperfusion in cardiomyocytes, Free radic. biol. med., 43, 590-599, (2007)
[22] Krewson, C.; Klarman, M.; Saltzman, W., Distribution of nerve growth factor following direct delivery to brain interstitium, Brain res., 680, 196-206, (1995)
[23] Kroemer, G.; Galluzzi, L.; Brenner, C., Mitochondrial membrane permeabilization in cell death, Physiol. rev., 87, 99-163, (2007)
[24] Lambrechts, D.; Robberecht, W.; Carmeliet, P., Heterogeneity in motoneuron disease, Trends neurosci., 30, 536-544, (2007)
[25] Ledo, A.; Barbosa, R.; Gerhardt, G.; Cadenas, E.; Laranjinha, J., Concentration dynamics of nitric oxide in rat hippocampal subregions evoked by stimulation of the NMDA glutamate receptor, Proc. natl. acad. sci. USA, 102, 17483-17488, (2005)
[26] Levy, S.; Leboeuf, A.; Massie, M.; Jordan, M.; Wilson, L.; Feinstein, S., Three- and four-repeat tau regulate the dynamic instability of two distinct microtubule subpopulations in qualitatively different manners: implications for neurodegeneration, J. biol. chem., 280, 13520-13528, (2005)
[27] Lomasko, T.; Clarke, G.; Lumsden, C., One-hit stochastic decline in a mechanochemical model of cytoskeleton-induced neuron death I: cell fate arrival times, J. theor. biol., 249, 1-17, (2007) · Zbl 1451.92100
[28] Lomasko, T.; Clarke, G.; Lumsden, C., One-hit stochastic decline in a mechanochemical model of cytoskeleton-induced neuron death II: transition state metastability, J. theor. biol., 249, 18-28, (2007) · Zbl 1451.92101
[29] Malinski, T.; Taha, Z.; Grunfeld, S.; Patton, S.; Kapturczak, M.; Tomboulian, P., Diffusion of nitric oxide in the aorta wall monitored in situ by porphyrinic microsensors, Biochem. biophys. res. commun., 193, 1076-1082, (1993)
[30] McMurray, C., Neurodegeneration: diseases of the cytoskeleton?, Cell death differ., 7, 861-865, (2000)
[31] Nauman, J.; Campbell, P.; Lanni, F.; Anderson, J., Diffusion of insulin-like growth factor-I and ribonuclease through fibrin gels, Biophys. J., 92, 4444-4450, (2007)
[32] Nicholson, C., Diffusion and related transport mechanisms in brain tissue, Rep. prog. phys., 64, 815-884, (2001)
[33] Nicholson, C., Factors governing diffusing molecular signals in brain extracellular space, J. neural transm., 112, 29-44, (2005)
[34] Rizzuto, R.; Pozzan, T., Microdomains of intracellular \(\operatorname{Ca}^{2 +}\): molecular determinants and functional consequences, Physiol. rev., 86, 369-408, (2006)
[35] Rusakov, D.; Kullmannn, D., Extrasynaptic glutamate diffusion in the hippocampus: ultrastructural constraints, uptake, and receptor activation, J. neurosci., 18, 3158-3170, (1998)
[36] Saltzman, W., Interstitial transport in the brain: principles for local drug delivery, (), pp. 11.1-11.14 (Chapter 11)
[37] Seyb, K.; Ansar, S.; Bean, J.; Michaelis, M., \(\beta\)-amyloid and endoplasmic reticulum stress responses in primary neurons: effects of drugs that interact with the cytoskeleton, J. mol. neurosci., 28, 111-123, (2006)
[38] Stroh, M.; Zipfel, W.; Williams, R.; Ma, S.; Webb, W.; Saltzman, W., Multiphoton microscopy guides neurotrophin modification with poly(ethylene glycol) to enhance interstitial diffusion, Nat. mater., 3, 489-494, (2004)
[39] Syková, E., Diffusion properties of the brain in health and disease, Neurochem. int., 45, 453-466, (2004)
[40] Thorne, R.; Nicholson, C., In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space, Proc. natl. acad. sci. USA, 103, 5567-5572, (2006)
[41] Thorne, R.; Hrabe˘tová, S.; Nicholson, C., Diffusion of epidermal growth factor in rat brain extracellular space measured by integrative optical imaging, J. neurophysiol., 92, 3471-3481, (2004)
[42] Wagner, J.; Keizer, J., Effects of rapid buffers on \(\operatorname{Ca}^{2 +}\) diffusion and \(\operatorname{Ca}^{2 +}\) oscillations, Biophys. J., 67, 447-456, (1994)
[43] Wolbers, F.; Buijtenhuijs, P.; Haanen, C.; Vermes, I., Apoptotic cell death kinetics in vitro depend on the cell types and the inducers used, Apoptosis, 9, 385-392, (2004)
[44] Wood, J.; Garthwaite, J., Models of the diffusional spread of nitric oxide: implications for neural nitric oxide signalling and its pharmacological properties, Neuropharmacology, 33, 1235-1244, (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.