×

Discreteness induced extinction. (English) Zbl 1400.92600

Summary: Two simple models based on ecological problems are discussed from the point of view of non-equilibrium statistical mechanics. It is shown how discrepant may be the results of the models that include spatial distribution with discrete interactions when compared with the continuous analogous models. In the continuous case we have, under certain circumstances, the population explosion. When we take into account the finiteness of the population, we get the opposite result, extinction. We will analyze how these results depend on the dimension \(d\) of the space and describe the phenomenon of the “Discreteness Inducing Extinction” (DIE). The results are interpreted in the context of the “paradox of sex”, an old problem of evolutionary biology.

MSC:

92D40 Ecology
60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)
82C05 Classical dynamic and nonequilibrium statistical mechanics (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Blossey, R., (Computational Biology: A Statistical Mechanics Perspective. Computational Biology: A Statistical Mechanics Perspective, Chapman & Hall/CRC Mathematical & Computational Biology (2006), Taylor & Francis), URL: http://books.google.com.br/books?id=eo66UCAl6IMC · Zbl 1162.92014
[2] Sella, G.; Hirsh, A. E., The application of statistical physics to evolutionary biology, Proc. Natl. Acad. Sci. USA, 102, 9541-9546 (2005)
[3] May, R., Theoretical Ecology: Principles and Applications (1976), Blackwell Scientific, URL: https://books.google.com.br/books?id=2GpRAAAAMAAJ
[4] Simonis, J. L., Demographic stochasticity reduces the synchronizing effect of dispersal in predator-prey metapopulations, Ecology, 93, 1517-1524 (2012)
[5] Yaari, G.; Ben-Zion, Y.; Shnerb, N. M.; Vasseur, D. A., Consistent scaling of persistence time in metapopulations, Ecology, 93, 1214-1227 (2012)
[6] Zelnik, Y. R.; Solomon, S.; Yaari, G., Species survival emerge from rare events of individual migration, Sci. Rep., 5 (2015)
[7] Abta, R.; Schiffer, M.; Shnerb, N. M., Amplitude-dependent frequency, desynchronization, and stabilization in noisy metapopulation dynamics, Phys. Rev. Lett., 98, 098104 (2007)
[8] Chakraborti, A.; Toke, I. M.; Patriarca, M.; Abergel, F., Econophysics review: II. Agent-based models, Quant. Finance, 11, 1013-1041 (2011)
[9] Mantegna, R.; Stanley, H., Introduction to Econophysics: Correlations and Complexity in Finance (1999), Cambridge University Press, URL: http://books.google.com.br/books?id=SzgXWCS7Nr8C · Zbl 1138.91300
[10] Sinha, S.; Chatterjee, A.; Chakraborti, A.; Chakrabarti, B., (Econophysics: An Introduction. Econophysics: An Introduction, Physics Textbook (2010), John Wiley & Sons), URL: http://books.google.com.br/books?id=4pGdegHs6MIC
[11] Slanina, F., Essentials of Econophysics Modelling (2013), OUP Oxford, URL: http://books.google.com.br/books?id=3CJoAgAAQBAJ · Zbl 1290.91002
[12] Galam, S., (Sociophysics: A Physicist’s Modeling of Psycho-Political Phenomena. Sociophysics: A Physicist’s Modeling of Psycho-Political Phenomena, Springer Complexity (2012), Springer), URL: http://books.google.com.br/books?id=edKEjA5wFjQC
[13] Sen, P.; Chakrabarti, B., Sociophysics: An Introduction (2013), OUP Oxford, URL: http://books.google.com.br/books?id=XWUBAQAAQBAJ
[14] Otto, S. P.; Lenormand, T., Resolving the paradox of sex and recombination, Nature Rev. Genet., 3, 252-261 (2002)
[15] Black, A.; McKane, A., Stochastic formulation of ecological models and their applications, Trends Ecol. Evol. (2012)
[16] Paulsson, J., Summing up the noise in gene networks, Nature, 427, 415-418 (2004)
[17] Doebeli, M.; Knowlton, N., The evolution of interspecific mutualisms, Proc. Natl. Acad. Sci., 95, 8676-8680 (1998)
[18] Lion, S.; Gandon, S., Habitat saturation and the spatial evolutionary ecology of altruism, J. Evol. Biol., 22, 1487-1502 (2009)
[19] Lehmann, L.; Keller, L.; Sumpter, D. J., The evolution of helping and harming on graphs: the return of the inclusive fitness effect, J. Evol. Biol., 20, 2284-2295 (2007)
[20] Hauert, C.; Doebeli, M., Spatial structure often inhibits the evolution of cooperation in the snowdrift game, Nature, 428, 643-646 (2004)
[21] Ovaskainen, O.; Meerson, B., Stochastic models of population extinction, Trends Ecol. Evol., 25, 643-652 (2010)
[22] Kessler, D.; Shnerb, N., Extinction rates for fluctuation-induced metastabilities: A real-space WKB approach, J. Stat. Phys., 127, 861-886 (2007) · Zbl 1118.91074
[23] Durrett, R.; Levin, S., The importance of being discrete (and spatial), Theor. Popul. Biol., 46, 363-394 (1994) · Zbl 0846.92027
[24] Shnerb, N.; Louzoun, Y.; Bettelheim, E.; Solomon, S., The importance of being discrete: Life always wins on the surface, Proc. Natl. Acad. Sci., 97, 10322 (2000) · Zbl 0955.92001
[25] Tauber, U. C.; Howard, M.; Vollmayr-Lee, B. P., Applications of field-theoretic renormalization group methods to reaction-diffusion problems, J. Phys. A-Math. Gen., 38, 79 (2005) · Zbl 1078.81061
[26] Santos, R. V.; Dickman, R., Survival of the scarcer in space, J. Stat. Mech. Theory Exp., 2013, P07004 (2013) · Zbl 1456.92112
[27] Rice, W. R.; Chippindale, A. K., Sexual recombination and the power of natural selection, Science, 294, 555-559 (2001)
[28] Colegrave, N., Sex releases the speed limit on evolution, Nature, 420, 664-666 (2002)
[29] Poon, A.; Chao, L., Drift increases the advantage of sex in RNA bacteriophage \(\phi 6\), Genetics, 166, 19-24 (2004)
[30] Goddard, M. R.; Godfray, H. C.J.; Burt, A., Sex increases the efficacy of natural selection in experimental yeast populations, Nature, 434, 636-640 (2005)
[31] Beck, J.; Ballesteros-Mejia, L.; Buchmann, C. M.; Dengler, J.; Fritz, S. A., What’s on the horizon for macroecology?, Ecography, 35, 673-683 (2012)
[32] Loreau, M., (From Populations to Ecosystems: Theoretical Foundations for a New Ecological Synthesis (MPB-46). From Populations to Ecosystems: Theoretical Foundations for a New Ecological Synthesis (MPB-46), Monographs in Population Biology (2010), Princeton University Press)
[33] Brown, J., Macroecology. Biology/Ecology (1995), University of Chicago Press
[34] O’Dwyer, J. P.; Green, J. L., Field theory for biogeography: a spatially explicit model for predicting patterns of biodiversity, Ecol. Lett., 13, 87-95 (2010)
[35] Messinger, S. M.; Ostling, A., Predator attack rate evolution in space: The role of ecology mediated by complex emergent spatial structure and self-shading, Theor. Popul. Biol., 89, 55-63 (2013)
[36] Hamilton, W.; Zuk, M., Heritable true fitness and bright birds: a role for parasites?, Science (1982)
[37] Allee, W.; Bowen, E. S., Studies in animal aggregations: mass protection against colloidal silver among goldfishes, J. Exp. Zool., 61, 185-207 (1932)
[38] Allee, W.; Park, O.; Emerson, A.; Park, T.; Schmidt, K., Principles of Animal Ecology (1949), WB Saunders: WB Saunders London
[39] Courchamp, F.; Berec, L.; Gascoigne, J., Allee Effects in Ecology and Conservation (2008), Oxford University Press: Oxford University Press Oxford, New York
[40] Windus, A.; Jensen, H., Allee effects and extinction in a lattice model, Theor. Popul. Biol., 72, 459-467 (2007) · Zbl 1141.92336
[41] Gastner, M. T.; Oborny, B.; Ryabov, A. B.; Blasius, B., Changes in the gradient percolation transition caused by an allee effect, Phys. Rev. Lett., 106, 128103 (2011)
[42] Durrett, R., Stochastic spatial models, SIAM Rev., 41, 677-718 (1999) · Zbl 0940.60086
[43] Preece, T.; Mao, Y., Sustainability of dioecious and hermaphrodite populations on a lattice, J. Theoret. Biol., 261, 336-340 (2009) · Zbl 1403.92262
[44] Mattis, D. C.; Glasser, M. L., The uses of quantum field theory in diffusion-limited reactions, Rev. Modern Phys., 70, 979 (1998)
[45] Täuber, U., Critical Dynamics: A Field Theory Approach to Equilibrium and Non-Equilibrium Scaling Behavior (2014), Cambridge University Press, URL: https://books.google.com.br/books?id=hL4dAwAAQBAJ
[46] Parisi, G., (Statistical Field Theory. Statistical Field Theory, Frontiers in Physics (1988), Addison-Wesley), URL: http://books.google.com.br/books?id=OF8sAAAAYAAJ · Zbl 0984.81515
[47] Mussardo, G., (Statistical Field Theory: An Introduction to Exactly Solved Models in Statistical Physics. Statistical Field Theory: An Introduction to Exactly Solved Models in Statistical Physics, Oxford Graduate Texts (2010), OUP Oxford), URL: http://books.google.com.br/books?id=JnLnXmBmCzsC · Zbl 1187.82001
[48] Täuber, U. C., Field-theory approaches to nonequilibrium dynamics, (Ageing and the Glass Transition (2007), Springer), 295-348 · Zbl 1157.82360
[49] Shnerb, N.; Bettelheim, E.; Louzoun, Y.; Agam, O.; Solomon, S., Adaptation of autocatalytic fluctuations to diffusive noise, Phys. Rev. E, 63, 021103 (2001)
[50] Louzoun, Y.; Shnerb, N.; Solomon, S., Microscopic noise, adaptation and survival in hostile environments, Eur. Phys. J. B, 56, 141-148 (2007)
[51] Agranovich, A.; Louzoun, Y.; Shnerb, N.; Moalem, S., Catalyst-induced growth with limited catalyst lifespan and competition, J. Theoret. Biol., 241, 307-320 (2006) · Zbl 1447.92322
[52] Louzoun, Y.; Solomon, S.; Atlan, H.; Cohen, I., Proliferation and competition in discrete biological systems, Bull. Math. Biol., 65, 375-396 (2003) · Zbl 1334.92159
[53] Challet, D.; Solomon, S.; Yaari, G., The universal shape of economic recession and recovery after a shock, Econ.: Open-Access Open-Assess. E-J., 3 (2009)
[54] Solomon, S.; Goldenberg, J.; Mazursky, D., World-size global markets lead to economic instability, Artif. Life, 9, 357-370 (2003)
[55] Yaari, G.; Nowak, A.; Rakocy, K.; Solomon, S., Microscopic study reveals the singular origins of growth, Eur. Phys. J. B, 62, 505-513 (2008)
[56] Becks, L.; Agrawal, A. F., Higher rates of sex evolve in spatially heterogeneous environments, Nature, 468, 89-92 (2010)
[57] Candolin, U.; Salesto, T.; Evers, M., Changed environmental conditions weaken sexual selection in sticklebacks, J. Evol. Biol., 20, 233-239 (2007)
[58] Candolin, U.; Heuschele, J., Is sexual selection beneficial during adaptation to environmental change?, Trends Ecol. Evol., 23, 446-452 (2008)
[59] Myhre, L. C.; Forsgren, E.; Amundsen, T., Effects of habitat complexity on mating behavior and mating success in a marine fish, Behav. Ecol., 24, 553-563 (2013)
[60] Levin, S. A., The problem of pattern and scale in ecology: the Robert H. Macarthur award lecture, Ecology, 73, 1943-1967 (1992)
[61] Bascompte, J.; Solé, R., Modeling Spatiotemporal Dynamics in Ecology, Environmental intelligence unit (1998), Springer
[62] Greig, D.; Borts, R. H.; Louis, E. J., The effect of sex on adaptation to high temperature in heterozygous and homozygous yeast, Proc. R. Soc. Lond. B Biol. Sci., 265, 1017-1023 (1998)
[63] Becks, L.; Agrawal, A. F., The evolution of sex is favoured during adaptation to new environments, PLoS Biol., 10, e1001317 (2012)
[64] van Wijland, F.; Oerding, K.; Hilhorst, H. J., Wilson renormalization of a reaction-diffusion process, Physica A, 251, 179-201 (1998)
[65] Zinn-Justin, J., (Quantum Field Theory and Critical Phenomena. Quantum Field Theory and Critical Phenomena, International Series of Monographs on Physics (2002), Clarendon Press) · Zbl 0865.00014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.