×

zbMATH — the first resource for mathematics

Double bundle method for finding Clarke stationary points in nonsmooth DC programming. (English) Zbl 1401.90170

MSC:
90C26 Nonconvex programming, global optimization
49J52 Nonsmooth analysis
65K05 Numerical mathematical programming methods
Software:
PBNCGC; MPBNGC
PDF BibTeX Cite
Full Text: DOI
References:
[1] A. Astorino, A. Fuduli, and M. Gaudioso, Margin maximization in spherical separation, Comput. Optim. Appl., 53 (2012), pp. 301–322. · Zbl 1258.90066
[2] A. M. Bagirov, A method for minimization of quasidifferentiable functions, Optim. Methods Softw., 17 (2002), pp. 31–60. · Zbl 1040.90038
[3] A. M. Bagirov, N. Karmitsa, and M. M. Mäkelä, Introduction to Nonsmooth Optimization: Theory, Practice and Software, Springer, Switzerland, 2014. · Zbl 1312.90053
[4] A. M. Bagirov, S. Taheri, and J. Ugon, Nonsmooth DC programming approach to the minimum sum-of-squares clustering problems, Pattern Recogn., 53 (2016), pp. 12–24.
[5] A. M. Bagirov and J. Ugon, Codifferential method for minimizing nonsmooth DC functions, J. Global Optim., 50 (2011), pp. 3–22. · Zbl 1242.90172
[6] A. M. Bagirov and J. Ugon, Nonsmooth DC programming approach to clusterwise linear regression: Optimality conditions and algorithms, Optim. Methods Softw., 33 (2018), pp. 194–219. · Zbl 1390.90436
[7] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983. · Zbl 0582.49001
[8] V. F. Demyanov and A. M. Rubinov, Constructive Nonsmooth Analysis, Approx. and Optim. 7, Peter Lang, Frankfurt am Main, Germany, 1995. · Zbl 0887.49014
[9] A. Ferrer, Representation of a polynomial function as a difference of convex polynomials with an application, in Generalized Convexity and Generalized Monotonicity, Lecture Notes in Econom. and Math. Systems 502, N. Hadjisavvas, J. E. Martínez-Legaz, and J. P. Penot, eds., Springer, Berlin, Heidelberg, 2001, pp. 189–207. · Zbl 0986.90037
[10] A. Fuduli, M. Gaudioso, and G. Giallombardo, Minimizing nonconvex nonsmooth functions via cutting planes and proximity control, SIAM J. Optim., 14 (2004), pp. 743–756. · Zbl 1079.90105
[11] A. Fuduli, M. Gaudioso, and E. A. Nurminski, A splitting bundle approach for non-smooth non-convex minimization, Optimization, 64 (2015), pp. 1131–1151. · Zbl 1311.90108
[12] M. Gaudioso and E. Gorgone, Gradient set splitting in nonconvex nonsmooth numerical optimization, Optim. Methods Softw., 25 (2010), pp. 59–74. · Zbl 1190.90140
[13] P. Hartman, On functions representable as a difference of convex functions, Pacific J. Math., 9 (1959), pp. 707–713. · Zbl 0093.06401
[14] J.-B. Hiriart-Urruty, Generalized differentiability/duality and optimization for problems dealing with differences of convex functions, in Convexity and Duality in Optimization, Lecture Notes in Econom. and Math. Systems 256, J. Ponstein, ed., Springer, Berlin, Heidelberg, 1985, pp. 37–70. · Zbl 0591.90073
[15] K. Holmberg and H. Tuy, A production-transportation problem with stochastic demand and concave production costs, Math. Prog., 85 (1999), pp. 157–179. · Zbl 0956.90020
[16] R. Horst and N. V. Thoai, DC programming: Overview, J. Optim. Theory Appl., 103 (1999), pp. 1–43.
[17] K. Joki, A. M. Bagirov, N. Karmitsa, and M. M. Mäkelä, A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes, J. Global Optim., 68 (2017), pp. 501–535. · Zbl 1369.90137
[18] K. Joki, A. M. Bagirov, N. Karmitsa, M. M. Mäkelä, and S. Taheri, Double Bundle Method for Nonsmooth DC Optimization, Technical report 1173, Turku Centre for Computer Science (TUCS), Turku, 2017.
[19] K. C. Kiwiel, Methods of Descent for Nondifferentiable Optimization, Lecture Notes in Math. 1133, Springer, Berlin, 1985. · Zbl 0561.90059
[20] K. C. Kiwiel, Proximity control in bundle methods for convex nondifferentiable minimization, Math. Prog., 46 (1990), pp. 105–122. · Zbl 0697.90060
[21] H. A. Le Thi and T. Pham Dinh, Solving a class of linearly constrained indefinite quadratic problems by D.C. algorithms, J. Global Optim., 11 (1997), pp. 253–285. · Zbl 0905.90131
[22] H. A. Le Thi and T. Pham Dinh, The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems, Ann. Oper. Res., 133 (2005), pp. 23–46. · Zbl 1116.90122
[23] H. A. Le Thi and T. Pham Dinh, DC programming and DCA for nonconvex optimization: Theory, algorithms and applications, in Proceedings of MAMERN 2009: 3rd International Conference on Approximation Methods and Numerical Modelling in Environment and Natural Resources, Pau, France, 2009; available at . · Zbl 1116.90122
[24] H. A. Le Thi, T. Pham Dinh, and H. V. Ngai, Exact penalty and error bounds in DC programming, J. Global Optim., 52 (2012), pp. 509–535. · Zbl 1242.49037
[25] L. Lukšan, Dual method for solving a special problem of quadratic programming as a subproblem at linearly constrained nonlinear minmax approximation, Kybernetika, 20 (1984), pp. 445–457.
[26] M. M. Mäkelä, Survey of bundle methods for nonsmooth optimization, Optim. Methods Softw., 17 (2002), pp. 1–29.
[27] M. M. Mäkelä, Multiobjective proximal bundle method for nonconvex nonsmooth optimization: Fortran subroutine MPBNGC 2.0, Reports of the Department of Mathematical Information Technology, Series B, Scientific Computing B 13/2003, University of Jyväskylä, Jyväskylä, 2003.
[28] M. M. Mäkelä and P. Neittaanmäki, Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control, World Scientific, Singapore, 1992.
[29] R. Mifflin, An algorithm for constrained optimization with semismooth functions, Math. Oper. Res., 2 (1977), pp. 191–207. · Zbl 0395.90069
[30] B. Ordin and A. M. Bagirov, A heuristic algorithm for solving the minimum sum-of-squares clustering problems, J. Global Optim., 61 (2015), pp. 341–361. · Zbl 1311.90111
[31] C. Pey-Chun, P. Hansen, B. Jaumard, and H. Tuy, Solution of the multisource Weber and conditional Weber problems by d.c. programming, Oper. Res., 46 (1998), pp. 548–562. · Zbl 0979.90099
[32] T. Pham Dinh and H. A. Le Thi, Convex analysis approach to DC programming: Theory, algorithms and applications, Acta Math. Vietnam, 22 (1997), pp. 289–355. · Zbl 0895.90152
[33] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970. · Zbl 0193.18401
[34] H. Schramm and J. Zowe, A version of the bundle idea for minimizing a nonsmooth function: Conceptual idea, convergence analysis, numerical results, SIAM J. Optim., 2 (1992), pp. 121–152. · Zbl 0761.90090
[35] J. C. O. Souza, P. R. Oliveira, and A. Soubeyran, Global convergence of a proximal linearized algorithm for difference of convex functions, Optim. Lett., 10 (2016), pp. 1529–1539. · Zbl 1355.90073
[36] J. F. Toland, On subdifferential calculus and duality in nonconvex optimization, Bull. Soc. Math. France, 60 (1979), pp. 177–183. · Zbl 0417.90088
[37] H. Tuy, Convex Analysis and Global Optimization, 1st ed., Kluwer Academic Publishers, Dordrecht, 1998. · Zbl 0904.90156
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.