A time of ruin constrained optimal dividend problem for spectrally one-sided Lévy processes. (English) Zbl 1401.91147

Summary: We introduce a longevity feature to the classical optimal dividend problem by adding a constraint on the time of ruin of the firm. We consider De Finetti’s problem for one-sided Lévy risk models in both scenarios with and without fix transaction costs. To characterize the solution to the aforementioned models we introduce the dual problem and show that the complementary slackness conditions are satisfied and therefore there is no duality gap. As a consequence the optimal value function can be obtained as the pointwise infimum of auxiliary value functions. Finally, we illustrate our findings with a series of numerical examples.


91B30 Risk theory, insurance (MSC2010)
60G51 Processes with independent increments; Lévy processes
93E20 Optimal stochastic control
Full Text: DOI arXiv


[1] Asmussen, S.; Taksar, M., Controlled diffusion models for optimal dividend pay-out, Insurance Math. Econom., 20, 1, 1-15, (1997) · Zbl 1065.91529
[2] Avram, F.; Kyprianou, A.; Pistorious, M., Exit problems for spectrally negative Lévy processes and application to (canadized) Russian options, Ann. Appl. Probab., 14, 1, 215-238, (2004) · Zbl 1042.60023
[3] Avram, F.; Palmowski, Z.; Pistorius, M., On the optimal dividend problem for a spectrally negative Lévy process, Ann. Appl. Probab., 17, 1, 156-180, (2007) · Zbl 1136.60032
[4] Avram, F.; Palmowski, Z.; Pistorius, M. R., On gerber-shiu functions and optimal dividend distribution for a Lévy risk process in the presence of a penalty function, Ann. Appl. Probab., 25, 4, 1868-1935, (2015) · Zbl 1322.60055
[5] Azcue, P.; Muler, N., Optimal reinsurance and dividend distribution policies in the cramér-lundberg model, Math. Finance, 15, 2, 261-308, (2005) · Zbl 1136.91016
[6] Bayraktar, E.; Kyprianou, A.; Yamazaki, K., On optimal dividends in the dual problem, Astin Bull., 43, 3, 359-372, (2014) · Zbl 1283.91192
[7] Bayraktar, E.; Kyprianou, A. E.; Yamazaki, K., Optimal dividends in the dual model under transaction costs, Insurance Math. Econom., 54, 133-143, (2014) · Zbl 1294.91071
[8] De Finetti, B., 1957. Su unimpostazion alternativa dell teoria collecttiva del rischio. In: Transactions of the XVth International Congress of Actuaries, no. 2.pp. 433-443.
[9] Gerber, H. U., Games of economic survival with discrete- and continuous-income processes, Oper. Res., 20, 1, 37-45, (1972) · Zbl 0236.90079
[10] Grandits, P., An optimal consumption problem in finite time with a constraint on the ruin probability, Finance Stoch., 19, 4, 791-847, (2015) · Zbl 1328.49016
[11] Hernández, C.; Junca, M., Optimal dividend payments under a constraint on the time value of ruin: exponential case, Insurance Math. Econom., 65, 1, 136-142, (2015) · Zbl 1348.91146
[12] Hipp, C., Optimal dividend payment under a ruin constraint: discrete time and state space, Bltter der DGVFM, 26, 2, 255-264, (2003)
[13] Kuznetsov, A., Kyprianou, A.E., Rivero, V., 2013. The theory of scale functions for spectrally negative Lévy processes. In: Levy Matters II, Vol. 2061. pp. 97-186. · Zbl 1261.60047
[14] Kyprianou, A.; Rivero, V.; Song, R., Smoothness and convexity of scale functions with applications to de finettis control problem, J. Theoret. Probab., 23, 2, 547-564, (2010) · Zbl 1188.93115
[15] Kyprianou, A. E., Fluctuations of Lévy Processes with Applications, Universitext, (2014), Springer-Verlag Berlin Heidelberg
[16] Loeffen, R., On the optimality of the barrier strategy in de finetti’s problem for spectrally negative Lévy processes, Ann. Appl. Probab., 18, 5, 1669-1680, (2008) · Zbl 1152.60344
[17] Loeffen, R., An optimal dividends problem with a terminal value for spectrally negative Lévy processes with a completely monotone jump density, J. Appl. Probab., 46, 1, 85-98, (2009) · Zbl 1166.60051
[18] Loeffen, R.; Renaud, J.-F., De finetti’s optimal dividends problem with an affine penalty function at ruin, Insurance Math. Econom., 46, 1, 98-108, (2010) · Zbl 1231.91212
[19] Loeffen, R. L., An optimal dividends problem with transaction costs for spectrally negative Lévy processes, Insurance Math. Econom., 45, 1, 41-48, (2009) · Zbl 1231.91211
[20] Paulsen, J., Optimal dividend payouts for diffusions with solvency constraints, Finance Stoch., 7, 4, 457-473, (2003) · Zbl 1038.60081
[21] Pistorius, M. R., On exit and ergodicity of the spectrally one-sided Lévy process reflected at its infimum, J. Theoret. Probab., 17, 1, 183-220, (2004) · Zbl 1049.60042
[22] Schmidli, H., On minimizing the ruin probability by investment and reinsurance, Ann. Appl. Probab., 12, 3, 890-907, (2002) · Zbl 1021.60061
[23] Schmidli, H., Stochastic control in insurance, Probability and Its Applications, (2008), Springer · Zbl 1133.93002
[24] Surya, B. A., Evaluating scale functions of spectrally negative Lévy processes, J. Appl. Probab., 45, 1, 135-149, (2008) · Zbl 1140.60027
[25] Taksar, M. I., Optimal risk and dividend distribution control models for an insurance company, Math. Methods Oper. Res., 51, 1, 1-42, (2000) · Zbl 0947.91043
[26] Thonhauser, S.; Albrecher, H., Dividend maximization under consideration of the time value of ruin, Insurance Math. Econom., 41, 1, 163-184, (2007) · Zbl 1119.91047
[27] Yin, C.; Wen, Y., Optimal dividend problem with a terminal value for spectrally positive Lévy processes, Insurance Math. Econom., 53, 3, 769-773, (2013) · Zbl 1290.91176
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.