×

From structure to dynamics: frequency tuning in the p53-Mdm2 network. I: Logical approach. (English) Zbl 1402.92165

Summary: We investigate the dynamical properties of a simple four-variable model describing the interactions between the tumour suppressor protein p53, its main negative regulator Mdm2 and DNA damage, a model inspired by the work of A. Ciliberto et al. [“Steady states and oscillations in the p53/Mdm2 network”, Cell Cycle 4, No. 3, 488–493 (2005; doi:10.4161/cc.4.3.1548)]. Its core consists of an antagonist circuit between p53 and nuclear Mdm2 embedded in a three-element negative circuit involving p53, cytoplasmic and nuclear Mdm2. A major concern has been to develop an integrated approach in which various types of descriptions complement each other. Here we present the logical analysis of our network and briefly discuss the corresponding differential model. Introducing the new notion of “logical bifurcation diagrams”, we show that the essential qualitative dynamical properties of our network can be summarized by a small number of bifurcation scenarios, which can be understood in terms of the balance between the positive and negative circuits of the core network. The model displays a wide variety of behaviours depending on the level of damage, the efficiency of damage repair and, importantly, the DNA-binding affinity and transcriptional activity of p53, which are both stress- and cell-type specific. Our results qualitatively account for several experimental observations such as p53 pulses after irradiation, failure to respond to irradiation, shifts in the frequency of the oscillations, or rapid dampening of the oscillations in a cell population. They also suggest a great variability of behaviour from cell to cell and between different cell types on the basis of different post-translational modifications and transactivation properties of p53. Finally, our differential analysis provides an interpretation of the high and low frequency oscillations observed by N. Geva-Zatorsky et al. [“Oscillations and variability in the p53 system”, Mol. Syst. Biol. 2006, No. 2, Article ID 2006.0033, 13 p. (2006; doi:10.1038/msb4100068)] depending on the irradiation dose. A more detailed analysis of our differential model as well as its stochastic analysis will be developed in a next paper.

MSC:

92C40 Biochemistry, molecular biology
92C42 Systems biology, networks
92C37 Cell biology

Software:

Ginsim
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adimoolam, S.; Ford, J.M., P53 and regulation of DNA damage recognition during nucleotide excision repair, DNA repair (amst), 2, 9, 947-954, (2003)
[2] Appella, E.; Anderson, C.W., Post-translational modifications and activation of p53 by genotoxic stresses, Eur. J. biochem., 268, 10, 2764-2772, (2001)
[3] Bakkenist, C.J.; Kastan, M.B., DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation, Nature, 421, 6922, 499-506, (2003)
[4] Barak, Y.; Juven, T.; Haffner, R.; Oren, M., Mdm2 expression is induced by wild type p53 activity, Embo j., 12, 2, 461-468, (1993)
[5] Bar-Or, R.L.; Maya, R.; Segel, L.A.; Alon, U.; Levine, A.J.; Oren, M., Generation of oscillations by the p53-mdm2 feedback loop: a theoretical and experimental study, Proc. natl. acad. sci. USA, 97, 21, 11250-11255, (2000)
[6] Batchelor, E.; Mock, C.S.; Bhan, I.; Loewer, A.; Lahav, G., Recurrent initiation: a mechanism for triggering p53 pulses in response to DNA damage, Mol. cell, 30, 3, 277-289, (2008)
[7] Bose, I.; Ghosh, B., The p53-mdm2 network: from oscillations to apoptosis, J. biosci., 32, 5, 991-997, (2007)
[8] Bottani, S.; Grammaticos, B., Analysis of a minimal model for p53 oscillations, J. theor. biol., 249, 2, 235-245, (2007) · Zbl 1453.92113
[9] Brooks, C.L.; Gu, W., P53 ubiquitination: mdm2 and beyond, Mol. cell, 21, 3, 307-315, (2006)
[10] Brooks, C.L.; Gu, W., Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation, Curr. opin. cell. biol., 15, 2, 164-171, (2003)
[11] Chen, J.; Lin, J.; Levine, A.J., Regulation of transcription functions of the p53 tumor suppressor by the mdm-2 oncogene, Mol. med., 1, 2, 142-152, (1995)
[12] Chène, P., The role of tetramerization in p53 function, Oncogene, 20, 21, 2611-2617, (2001)
[13] Chickarmane, V., Nadim, A., Ray, A., Sauro, H.M., 2005. A p53 oscillator model of DNA break repair control, arXiv:q-bio/0510002. Available at: ⟨http://www.citebase.org/abstract?id=oai:arXiv.org:q-bio/0510002〉;.; Chickarmane, V., Nadim, A., Ray, A., Sauro, H.M., 2005. A p53 oscillator model of DNA break repair control, arXiv:q-bio/0510002. Available at: ⟨http://www.citebase.org/abstract?id=oai:arXiv.org:q-bio/0510002〉;.
[14] Ciliberto, A.; Novak, B.; Tyson, J.J., Steady states and oscillations in the p53/mdm2 network, Cell cycle, 4, 3, 488-493, (2005)
[15] Coutts, A.S.; Boulahbel, H.; Graham, A.; Thangue, N.B.L., Mdm2 targets the p53 transcription cofactor JMY for degradation, EMBO rep., 8, 1, 84-90, (2007)
[16] Fauré, A.; Naldi, A.; Chaouiya, C.; Thieffry, D., Dynamical analysis of a generic Boolean model for the control of the Mammalian cell cycle, Bioinformatics, 22, 14, e124-e131, (2006)
[17] Feng, Z.; Hu, W.; Stanchina, E.D.; Teresky, A.K.; Jin, S.; Lowe, S., The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mtor pathways, Cancer res., 67, 7, 3043-3053, (2007)
[18] Freedman, D.A.; Wu, L.; Levine, A.J., Functions of the MDM2 oncoprotein, Cell mol. life sci., 55, 1, 96-107, (1999)
[19] Friedman, P.N.; Chen, X.; Bargonetti, J.; Prives, C., The p53 protein is an unusually shaped tetramer that binds directly to DNA, Proc. natl. acad. sci. USA, 90, 8, 3319-3323, (1993)
[20] Gatz, S.A.; Wiesmüller, L., P53 in recombination and repair, Cell death differ., 13, 6, 1003-1016, (2006)
[21] Geva-Zatorsky, N.; Rosenfeld, N.; Itzkovitz, S.; Milo, R.; Sigal, A.; Dekel, E., Oscillations and variability in the p53 system, Mol. syst. biol., 2, (2006), 2006.0033
[22] Glass, L.; Kauffman, S.A., The logical analysis of continuous, nonlinear biochemical control networks, J. theor. biol., 39, 103-129, (1973)
[23] Gonzalez, A.G.; Naldi, A.; Sánchez, L.; Thieffry, D.; Chaouiya, C., Ginsim: a software suite for the qualitative modelling, simulation and analysis of regulatory networks, Biosystems, 84, 2, 91-100, (2006)
[24] Gottlieb, T.M.; Martinez, J.F.; Seger, R.; Taya, Y.; Oren, M., Cross-talk between akt, p53 and mdm2: possible implications for the regulation of apoptosis, Oncogene, 21, 8, 1299-1303, (2002)
[25] Hamstra, D.A.; Bhojani, M.S.; Griffin, L.B.; Laxman, B.; Ross, B.D.; Rehemtulla, A., Real-time evaluation of p53 oscillatory behavior in vivo using bioluminescent imaging, Cancer res., 66, 15, 7482-7489, (2006)
[26] Haupt, Y.; Maya, R.; Kazaz, A.; Oren, M., Mdm2 promotes the rapid degradation of p53, Nature, 387, 6630, 296-299, (1997)
[27] Honda, R.; Yasuda, H., Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase, Oncogene, 19, 11, 1473-1476, (2000)
[28] Hu, W.; Feng, Z.; Ma, L.; Wagner, J.; Rice, J.J.; Stolovitzky, G.; Levine, A.J., A single nucleotide polymorphism in the MDM2 gene disrupts the oscillation of p53 and MDM2 levels in cells, Cancer res., 67, 6, 2757-2765, (2007)
[29] Kaufman, M.; Urbain, J.; Thomas, R., Towards a logical analysis of the immune response, J. theor. biol., 114, 527-561, (1985)
[30] Lahav, G.; Rosenfeld, N.; Sigal, A.; Geva-Zatorsky, N.; Levine, A.J.; Elowitz, M.B., Dynamics of the p53-mdm2 feedback loop in individual cells, Nat. genet., 36, 2, 147-150, (2004)
[31] Lozano, G.; Elledge, S.J., P53 sends nucleotides to repair DNA, Nature, 404, 6773, 24-25, (2000)
[32] Ma, L.; Wagner, J.; Rice, J.J.; Hu, W.; Levine, A.J.; Stolovitzky, G.A., A plausible model for the digital response of p53 to DNA damage, Proc. natl. acad. sci. USA, 102, 40, 14266-14271, (2005)
[33] Mayo, L.D.; Donner, D.B., The PTEN, mdm2, p53 tumor suppressor-oncoprotein network, Trends biochem. sci., 27, 9, 462-467, (2002)
[34] Mayo, L.D.; Seo, Y.R.; Jackson, M.W.; Smith, M.L.; Guzman, J.R.; Korgaonkar, C.K., Phosphorylation of human p53 at serine 46 determines promoter selection and whether apoptosis is attenuated or amplified, J. biol. chem., 280, 28, 25953-25959, (2005)
[35] McLure, K.G.; Lee, P.W., How p53 binds DNA as a tetramer, Embo j., 17, 12, 3342-3350, (1998)
[36] Meek, D.W., Multisite phosphorylation and the integration of stress signals at p53, Cell signal, 10, 3, 159-166, (1998)
[37] Momand, J.; Zambetti, G.P.; Olson, D.C.; George, D.; Levine, A.J., The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation, Cell, 69, 7, 1237-1245, (1992)
[38] Monk, N.A., Oscillatory expression of hes1, p53, and NF-kappa B driven by transcriptional time delays, Curr. biol., 13, 1409-1413, (2003)
[39] Naldi, A., Thieffry, D., Chaouiya, C., 2007. Decision diagrams for the representation of logical models of regulatory networks. In: CMSB’07, Lecture Notes in Bioinformatics (LNBI), vol. 4695. pp. 233-247.; Naldi, A., Thieffry, D., Chaouiya, C., 2007. Decision diagrams for the representation of logical models of regulatory networks. In: CMSB’07, Lecture Notes in Bioinformatics (LNBI), vol. 4695. pp. 233-247.
[40] Offer, H.; Wolkowicz, R.; Matas, D.; Blumenstein, S.; Livneh, Z.; Rotter, V., Direct involvement of p53 in the base excision repair pathway of the DNA repair machinery, FEBS lett., 450, 3, 197-204, (1999)
[41] Ogunnaike, B.A., Elucidating the digital control mechanism for DNA damage repair with the p53-mdm2 system: single cell data analysis and ensemble modelling, J. R. soc. interface, 3, 6, 175-184, (2006)
[42] Oliner, J.D.; Pietenpol, J.A.; Thiagalingam, S.; Gyuris, J.; Kinzler, K.W.; Vogelstein, B., Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53, Nature, 362, 6423, 857-860, (1993)
[43] Oren, M., Decision making by p53: life, death and cancer, Cell death differ., 10, 4, 431-442, (2003)
[44] Oren, M.; Damalas, A.; Gottlieb, T.; Michael, D.; Taplick, J.; Leal, J.F.M.; Maya, R.; Moas, M.; Seger, R.; Taya, Y.; Ben-Ze’ev, A., Regulation of p53: intricate loops and delicate balances, Biochem. pharmacol., 64, 5-6, 865-871, (2002)
[45] Puszyński, K.; Hat, B.; Lipniacki, T., Oscillations and bistability in the stochastic model of p53 regulation, J. theor. biol., 254, 2, 452-465, (2008) · Zbl 1400.92200
[46] Ramalingam, S.; Honkanen, P.; Young, L.; Shimura, T.; Austin, J.; Steeg, P.S.; Nishizuka, S., Quantitative assessment of the p53-mdm2 feedback loop using protein lysate microarrays, Cancer res., 67, 13, 6247-6252, (2007)
[47] Remy, E.; Ruet, P.; Thieffry, D., Graphic requirements for multistability and attractive cycles in a Boolean dynamical framework, Adv. appl. math., 41, 335-350, (2008) · Zbl 1169.05333
[48] Richard, A.; Comet, J.-P., Necessary conditions for multistationarity in discrete dynamical systems, Discrete appl. math., 155, 18, 2403-2413, (2007) · Zbl 1125.37062
[49] Siebert, H., Bockmayr, A., 2007. Context sensitivity in logical modelling with time delays. In: Computational Methods in Systems Biology, CMSB 2007. Lecture Notes in Bioinformatics (LNBI), vol. 4695. Springer, Berlin, pp. 64-79.; Siebert, H., Bockmayr, A., 2007. Context sensitivity in logical modelling with time delays. In: Computational Methods in Systems Biology, CMSB 2007. Lecture Notes in Bioinformatics (LNBI), vol. 4695. Springer, Berlin, pp. 64-79.
[50] Siebert, H.; Bockmayr, A., Temporal constraints in the logical analysis of regulatory networks, Theor. comput. sci., 391, 258-275, (2008) · Zbl 1133.68041
[51] Singh, B.; Reddy, P.G.; Goberdhan, A.; Walsh, C.; Dao, S.; Ngai, I., P53 regulates cell survival by inhibiting PIK3CA in squamous cell carcinomas, Genes dev., 16, 8, 984-993, (2002)
[52] Snoussi, E.H., Qualitative dynamics of piecewise-linear differential equations: a discrete mapping approach, Dyn. stability systems, 4, 189-207, (1989) · Zbl 0678.34010
[53] Snoussi, E.H.; Thomas, R., Logical identification of all steady states: the concept of feedback loop characteristic states, Bull. math. biol., 55, 973-991, (1993) · Zbl 0784.92002
[54] Stambolic, V.; MacPherson, D.; Sas, D.; Lin, Y.; Snow, B.; Jang, Y., Regulation of PTEN transcription by p53, Mol. cell, 8, 317-325, (2001)
[55] Stommel, J.M.; Wahl, G.M., Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation, Embo j., 23, 1547-1556, (2004)
[56] Stommel, J.M.; Wahl, G.M., A new twist in the feedback loop: stress-activated MDM2 destabilization is required for p53 activation, Cell cycle, 4, 3, 411-417, (2005)
[57] Thomas, R., Boolean formalization of genetic control circuits, J. theor. biol., 42, 563-585, (1973)
[58] Thomas, R., Logical analysis of systems comprising feedback loops, J. theor. biol., 73, 631-656, (1978)
[59] Thomas, R., 1979. Some biological examples. In: Lecture Notes in Biomathematics, vol. 29. pp. 354-401.; Thomas, R., 1979. Some biological examples. In: Lecture Notes in Biomathematics, vol. 29. pp. 354-401.
[60] Thomas, R., Regulatory networks seen as asynchronous automata: a logical description, J. theor. biol., 153, 1-23, (1991)
[61] Thomas, R.; D’Ari, R., Biological feedback, (1990), CRC Press Boca Raton, FL, 316pp · Zbl 0743.92003
[62] Thomas, R.; Kaufman, M., Multistationarity, the basis of cell differentiation and memory II. logical analysis of regulatory networks in terms of feedback circuits, Chaos, 11, 180-195, (2001) · Zbl 0997.92012
[63] Thomas, R.; Kaufman, M., Multistationarity, the basis of cell differentiation and memory I. structural conditions of multistationarity and other nontrivial behavior, Chaos, 11, 170-179, (2001) · Zbl 0997.92011
[64] Thomas, R.; Thieffry, D.; Kaufman, M., Dynamical behaviour of biological regulatory networks—I. biological role of feedback loops and practical use of the concept of the loop-characteristic state, Bull. math. biol., 5, 2, 247-276, (1995) · Zbl 0821.92009
[65] Tiana, G.; Jensen, M.; Sneppen, K., Time delay as a key to apoptosis induction in the p53 network, Eur. phys. J. B, 29, 135-140, (2002)
[66] Vogelstein, B.; Lane, D.; Levine, A.J., Surfing the p53 network, Nature, 408, 6810, 307-310, (2000)
[67] Wagner, J.; Ma, L.; Rice, J.J.; Hu, W.; Levine, A.J.; Stolovitzky, G.A., P53-mdm2 loop controlled by a balance of its feedback strength and effective dampening using ATM and delayed feedback, Syst. biol. (stevenage), 152, 3, 109-118, (2005)
[68] Weinberg, R.L.; Veprintsev, D.B.; Fersht, A.R., Cooperative binding of tetrameric p53 to DNA, J. mol. biol., 341, 3, 1145-1159, (2004)
[69] Xirodimas, D.P.; Saville, M.K.; Bourdon, J.-C.; Hay, R.T.; Lane, D.P., Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity, Cell, 118, 1, 83-97, (2004)
[70] Zhang, T.; Brazhnik, P.; Tyson, J.J., Exploring mechanisms of the DNA-damage response: p53 pulses and their possible relevance to apoptosis, Cell cycle, 6, 1, 85-94, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.