×

zbMATH — the first resource for mathematics

The subalgebras of \(\mathfrak{so}(4,\mathbb C)\). (English) Zbl 1403.17005
Summary: We classify the solvable subalgebras, semisimple subalgebras, and Levi decomposable subalgebras of \(\mathfrak{so}(4,\mathbb C)\), up to inner automorphism. By Levi’s Theorem, this is a full classification of the subalgebras of \(\mathfrak{so}(4,\mathbb C)\).

MSC:
17B05 Structure theory for Lie algebras and superalgebras
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
17B20 Simple, semisimple, reductive (super)algebras
17B30 Solvable, nilpotent (super)algebras
Software:
SLA
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Burde D., J. Lie Theory 22 (3) pp 741– (2012)
[2] DOI: 10.1016/j.jalgebra.2015.01.012 · Zbl 1354.17007
[3] DOI: 10.1063/1.4880195 · Zbl 1328.17010
[4] DOI: 10.1016/j.jpaa.2013.01.010 · Zbl 1329.17009
[5] DOI: 10.1063/1.4790415
[6] DOI: 10.1080/10586458.2005.10128911 · Zbl 1173.17300
[7] de Graaf, W. A. (2009). SLA-computing with simple Lie algebras. A GAP package. Available at: http://www.science.unitn.it/ degraaf/sla.html.
[8] DOI: 10.1016/j.jalgebra.2010.10.021 · Zbl 1255.17007
[9] Jacobson N., Lie Algebras (1962)
[10] Minchenko, A. N. (2006). The semisimple subalgebras of exceptional Lie algebras.Trans. Moscow Math. Soc.225–259. (S 0077-1554(06)). · Zbl 1152.17003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.