zbMATH — the first resource for mathematics

Explicit expressions and statistical inference of generalized Rayleigh distribution based on lower record values. (English) Zbl 1403.62085
Summary: This article addresses the problem of frequentist and Bayesian estimation of the parameters of the generalized Rayleigh distribution using lower record values. The explicit expressions for single and product moments of lower record values from this distribution are given. The maximum likelihood and Bayes estimates based on lower records are derived for the parameters of the distribution. We consider the Bayes estimators of the parameters under the assumption of Gamma priors with respect to the shape and scale parameters. The Bayes estimators are inaccessible in explicit form. We analyze them with reference to both symmetric and asymmetric loss functions. We also derive the Bayes interval of this distribution. We carry out Monte Carlo simulations to compare the performance of the proposed methods.

MSC:
 62G30 Order statistics; empirical distribution functions 62N05 Reliability and life testing 62E10 Characterization and structure theory of statistical distributions 60F17 Functional limit theorems; invariance principles
Full Text:
References:
 [1] Ahmadi, J.; Doostparast, M., Bayesian estimation and prediction for some life time distributionsbased on record values, Statist. Pap., 47, 373-392, (2006) · Zbl 1125.62020 [2] Ahsanullah, M., Linear prediction of record values for the two parameter exponential distribution, Ann. Inst. Statist. Math., 32, 363-368, (1980) · Zbl 0456.62026 [3] M. Ahsanullah, Record Statistics (Nova Science Publishers, New York, 1995). · Zbl 0907.62017 [4] B. C. Arnold, N. Balakrishnan, and H. N. Nagaraja, Record (Wiley, New York, 1998). [5] B. C. Arnold, N. Balakrishnan, and H. N. Nagaraja, A First Course in Order Statistics (Wiley, New York, 1992). · Zbl 0850.62008 [6] Balakrishnan, N.; Ahsanullah, M., Recurrence relations for single and product moments of record values from generalized Pareto distribution, Comm. Statist. Theory Methods, 23, 2841-2852, (1994) · Zbl 0850.62118 [7] Balakrishnan, N.; Ahsanullah, M., Relations for single and product moments of record values from exponential distribution, J. Appl. Statist. Sci., 2, 73-87, (1995) · Zbl 0822.62005 [8] Basak, P.; Balakrishnan, N., Maximum likelihood prediction of future record statistics, 159-175, (2003), Singapore [9] Berred, A. M., Prediction of record values, Commun. Statist. Theor. Meth., 27, 2221-2240, (1998) · Zbl 0907.62037 [10] Calabria, R.; Pulcini, G., Point estimation under asymmetric loss functions for left-truncated exponential samples, Comm. Statist. Theory Methods, 25, 585-600, (1996) · Zbl 0875.62101 [11] Chandler, K. N., The distribution and frequency of recordvalues, J. Roy. Statist. Soc., Ser. B, 14, 220-228, (1952) · Zbl 0047.38302 [12] Dunsmore, I. R., The future occurrence of records, Ann. Inst. Statist. Math., 35, 267-277, (1983) · Zbl 0522.62027 [13] Grudzien, Z.; Szynal, D., Characterization of uniform and exponential distributions via moments of the kth record values with random indices, Appl. Statist. Sci., 5, 259-266, (1997) · Zbl 0888.62009 [14] Jeffreys, H., An invariant form for the prior probability in estimation problems, Proc. Roy. Soc. London, Ser. A, Math. and Phys. Sci., 186, 435-4616, (1946) · Zbl 0063.03050 [15] Kumar, D.; Kulshrestha, A., Expectation identities of upper record values from generalized Pareto distribution and a characterization, J. Stat. Appl. Pro., 2, 115-121, (2013) [16] Kundu, D.; Raqab, M. Z., Generalized Rayleigh distribution: differentmethods of estimations, Comp. Statist. Data Anal., 49, 187-200, (2005) · Zbl 1429.62449 [17] J. F. Lawless, Statistical Models and Methods for Lifetime Data, 2nd ed. (Wiley, New York, 1982). · Zbl 0541.62081 [18] Lin, G. D., On a moment problem, TohokuMath. J., 38, 595-598, (1986) · Zbl 0602.42016 [19] H. F. Martz and R. A. Waller, Bayesian Reliability Analysis (Wiley, New York, 1982). · Zbl 0597.62101 [20] Metropolis, N.; Rosenbluth, A. W.; Rosebluth, M. N.; Teller, A. H.; Teller, E., Equations of state calculations by fast computing machines, J. Chemical Phys., 21, 1087-1092, (1953) [21] Surles, J. G.; Padgett, W. J., Inference for reliability and stress-strength for a scaled burr type X distribution, Lifetime Data Anal., 7, 187-200, (2001) · Zbl 0984.62082 [22] Surles, J. G.; Padgett, W. J., Some properties of a scaled burr type X distribution, J. Statist. Plann. Inference, 128, 271-280, (2005) · Zbl 1058.62017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.