zbMATH — the first resource for mathematics

Estimating the parameters of an inverse Weibull distribution under progressive type-I interval censoring. (English) Zbl 1403.62186
Summary: In this paper, we consider the problem of estimating unknown parameters of an inverse Weibull distribution when it is known that samples are progressive type-I interval censored. We propose an EM algorithm to obtain maximum likelihood estimates and mid point estimates. For comparison purpose Bayes estimates are also obtained under the square error loss function. A simulation study is conducted to access the performance of the proposed estimators and recommendations are made on the basis of simulation results. A real data set is also analyzed in detail for an illustration purpose. Finally, by making use of expected Fisher information matrix various inspection times and optimal censoring schemes are obtained.

62N05 Reliability and life testing
62F10 Point estimation
62F15 Bayesian inference
62N01 Censored data models
62B10 Statistical aspects of information-theoretic topics
PDF BibTeX Cite
Full Text: DOI
[1] Aggarwal, V, On optimum aggregation of income distribution data, Sankhyā: Indian J Stat Ser B, 46, 343-355, (1984)
[2] Aggarwala, R, Progressive interval censoring: some mathematical results with applications to inference, Commun Stat: Theory Methods, 30, 1921-1935, (2001) · Zbl 0991.62079
[3] Ashour, S; Afify, W, Statistical analysis of exponentiated Weibull family under type i progressive interval censoring with random removals, J Appl Sci Res, 3, 1851-1863, (2007)
[4] Balakrishnan, N, Progressive censoring methodology: an appraisal, Test, 16, 211-259, (2007) · Zbl 1121.62052
[5] Bennett, S, Log-logistic regression models for survival data, Appl Stat, 32, 165-171, (1983)
[6] Calabria, R; Pulcini, G, Bayes 2-sample prediction for the inverse Weibull distribution, Commun Stat: Theory Methods, 23, 1811-1824, (1994) · Zbl 0825.62167
[7] Chen, D; Lio, Y, Parameter estimations for generalized exponential distribution under progressive type-i interval censoring, Comput Stat Data Anal, 54, 1581-1591, (2010) · Zbl 1284.62595
[8] Chen, DG; Lio, Y; Jiang, N, Lower confidence limits on the generalized exponential distribution percentiles under progressive type-i interval censoring, Commun Stat: Simul Comput, 42, 2106-2117, (2013) · Zbl 1302.62069
[9] Cheng, K; Chen, C, Estimation of the Weibull parameters with grouped data, Commun Stat: Theory Methods, 17, 325-341, (1988) · Zbl 0639.62017
[10] Dempster, AP; Laird, NM; Rubin, DB, Maximum likelihood from incomplete data via the EM algorithm, J R Stat Soc Ser B (Methodol), 39, 1-38, (1977) · Zbl 0364.62022
[11] Ding, C; Yang, C; Tse, SK, Accelerated life test sampling plans for the Weibull distribution under type i progressive interval censoring with random removals, J Stat Comput Simul, 80, 903-914, (2010) · Zbl 1195.62155
[12] Erto, P, Genesis, properties and identification of the inverse Weibull lifetime model, Stat Appl, 1, 117-128, (1989)
[13] Hermawanto D (2013) Genetic algorithm for solving simple mathematical equality problem. arXiv preprint arXiv:1308.4675
[14] Hosmer Jr DW, Lemeshow S (1999) Applied survival analysis: Regression modelling of time to event data
[15] Jiang, R; Ji, P; Xiao, X, Aging property of unimodal failure rate models, Reliab Eng Syst Saf, 79, 113-116, (2003)
[16] Keller A, Kamath A (1982) Alternate reliability models for mechanical systems. ESA Reliab Maintainab, pp 411-415(SEE N 83-20178 10-38)
[17] Kim, DH; Lee, WD; Kang, SG, Non-informative priors for the inverse Weibull distribution, J Stat Comput Simul, 84, 1039-1054, (2014)
[18] Kundu, D; Howlader, H, Bayesian inference and prediction of the inverse Weibull distribution for type-ii censored data, Comput Stat Data Anal, 54, 1547-1558, (2010) · Zbl 1284.62604
[19] Langlands, AO; Pocock, SJ; Kerr, GR; Gore, SM, Long-term survival of patients with breast cancer: a study of the curability of the disease, BMJ, 2, 1247-1251, (1979)
[20] Lawless JF (2011) Statistical models and methods for lifetime data, vol 362. Wiley, New York · Zbl 0541.62081
[21] Lin, CT; Wu, SJ; Balakrishnan, N, Planning life tests with progressively type-i interval censored data from the lognormal distribution, J Stat Plan Inference, 139, 54-61, (2009) · Zbl 1154.62074
[22] Lin, YJ; Lio, Y, Bayesian inference under progressive type-i interval censoring, J Appl Stat, 39, 1811-1824, (2012) · Zbl 06100423
[23] Lindley, DV, Approximate Bayesian methods, Trabajos de estadística y de investigación operativa, 31, 223-245, (1980) · Zbl 0458.62002
[24] Lio, Y; Chen, DG; Tsai, TR, Parameter estimations for generalized Rayleigh distribution under progressively type-i interval censored data, Open J Stat, 1, 46, (2011)
[25] Little, RJA; Rubin, DB; Kotz, S (ed.); Johnson, NL (ed.), Incomplete data, No. 4, 46-53, (1983), New York
[26] Maswadah, M, Conditional confidence interval estimation for the inverse Weibull distribution based on censored generalized order statistics, J Stat Comput Simul, 73, 887-898, (2003) · Zbl 1039.62024
[27] Meeker, WQ, Planning life tests in which units are inspected for failure, IEEE Trans Reliab, 35, 571-578, (1986) · Zbl 0623.62097
[28] Ng, H; Chan, P; Balakrishnan, N, Optimal progressive censoring plans for the Weibull distribution, Technometrics, 46, 470-481, (2004)
[29] Ng, HKT; Wang, Z, Statistical estimation for the parameters of Weibull distribution based on progressively type-i interval censored sample, J Stat Comput Simul, 79, 145-159, (2009) · Zbl 1161.62066
[30] Palumbo B, Pallotta G (2012) New approach to the identification of the Inverse Weibull model. 46th Scientific Meeting of the Italian Statistical Society · Zbl 0991.62079
[31] Peng, X; Yan, Z, Bayesian estimation for generalized exponential distribution based on progressive type-i interval censoring, Acta Math Appl Sin Engl Ser, 29, 391-402, (2013) · Zbl 1329.62138
[32] Pradhan B, Gijo EV (2013) Parameter estimation of lognormal distribution under progressive type-I interval censoring. Technical Report No. sqcor-2013-02
[33] Pradhan, B; Kundu, D, On progressively censored generalized exponential distribution, Test, 18, 497-515, (2009) · Zbl 1203.62019
[34] Prentice, RL, Exponential survivals with censoring and explanatory variables, Biometrika, 60, 279-288, (1973) · Zbl 0267.62010
[35] Singh, S; Tripathi, YM, Reliability sampling plans for a lognormal distribution under progressive first-failure censoring with cost constraint, Stat Pap, 56, 773-817, (2015) · Zbl 1364.62243
[36] Singh, SK; Singh, U; Kumar, D, Bayesian estimation of parameters of inverse Weibull distribution, J Appl Stat, 40, 1597-1607, (2013)
[37] Singh, S; Tripathi, YM; Wu, SJ, On estimating parameters of a progressively censored lognormal distribution, J Stat Comput Simul, 85, 1071-1089, (2015)
[38] Sultan, K; Alsadat, N; Kundu, D, Bayesian and maximum likelihood estimations of the inverse Weibull parameters under progressive type-ii censoring, J Stat Comput Simul, 84, 2248-2265, (2014)
[39] Tierney, L; Kadane, JB, Accurate approximations for posterior moments and marginal densities, J Am Stat Assoc, 81, 82-86, (1986) · Zbl 0587.62067
[40] Xiuyun P, Zaizai Y (2011) Parameter estimations with gamma distribution based on progressive type-i interval censoring. In: 2011 IEEE international conference on computer science and automation engineering, pp 449-453 · Zbl 1284.62604
[41] Yang, C; Tse, SK, Planning accelerated life tests under progressive type I interval censoring with random removals, Commun Stat: Simul Comput, 34, 1001-1025, (2005) · Zbl 1078.62111
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.