Gaussian process models for mortality rates and improvement factors. (English) Zbl 1403.62193

Summary: We develop a Gaussian process (GP) framework for modeling mortality rates and mortality improvement factors. GP regression is a nonparametric, data-driven approach for determining the spatial dependence in mortality rates and jointly smoothing raw rates across dimensions, such as calendar year and age. The GP model quantifies uncertainty associated with smoothed historical experience and generates full stochastic trajectories for out-of-sample forecasts. Our framework is well suited for updating projections when newly available data arrives, and for dealing with “edge” issues where credibility is lower. We present a detailed analysis of GP model performance for US mortality experience based on the CDC (Center for Disease Control) datasets. We investigate the interaction between mean and residual modeling, Bayesian and non-Bayesian GP methodologies, accuracy of in-sample and out-of-sample forecasting, and stability of model parameters. We also document the general decline, along with strong age-dependency, in mortality improvement factors over the past few years, contrasting our findings with the Society of Actuaries (SOA) MP-2014 and -2015 models that do not fully reflect these recent trends.


62P05 Applications of statistics to actuarial sciences and financial mathematics
60G15 Gaussian processes
62M20 Inference from stochastic processes and prediction
91B30 Risk theory, insurance (MSC2010)
91D20 Mathematical geography and demography
Full Text: DOI arXiv


[1] Adler, R. J., The Geometry of Random Fields, (1981), SIAM: SIAM, Chichester, NY · Zbl 0478.60059
[2] Brooks, S.; Gelman, A.; Jones, G.; Meng, X.-L., Handbook of Markov Chain Monte Carlo, (2011), CRC press: CRC press, Boca Raton, FL · Zbl 1218.65001
[3] Brouhns, N.; Denuit, M.; Vermunt, J. K., A Poisson log-bilinear regression approach to the construction of projected lifetables, Insurance: Mathematics and Economics, 31, 373-393, (2002) · Zbl 1074.62524
[4] Cairns, A. J.; Blake, D.; Dowd, K., A two-factor model for stochastic mortality with parameter uncertainty: Theory and calibration, Journal of Risk and Insurance, 73, 687-718, (2006)
[5] Cairns, A. J.; Blake, D.; Dowd, K.; Coughlan, G. D.; Epstein, D.; Khalaf-Allah, M., Mortality density forecasts: An analysis of six stochastic mortality models, Insurance: Mathematics and Economics, 48, 355-367, (2011)
[6] Cairns, A. J.; Blake, D.; Dowd, K.; Coughlan, G. D.; Epstein, D.; Ong, A.; Balevich, I., A quantitative comparison of stochastic mortality models using data from England and Wales and the United States, North American Actuarial Journal, 13, 1-35, (2009)
[7] Camarda, C. G., Mortalitysmooth: An R package for smoothing Poisson counts with P-splines, Journal of Statistical Software, 50, 1-24, (2012)
[8] Carpenter, B.; Lee, D.; Brubaker, M. A.; Riddell, A.; Gelman, A.; Goodrich, B.; Guo, J.; Hoffman, M.; Betancourt, M.; Li, P., Stan: A probabilistic programming language, Journal of Statistical Software, 76, (2016)
[9] (2015)
[10] Cressie, N., Statistics for Spatial Data, (2015), Canada: John Wiley & Sons, Canada · Zbl 1347.62005
[11] Currie, I. D., Smoothing constrained generalized linear models with an application to the Lee-Carter model, Statistical Modelling, 13, 69-93, (2013)
[12] Currie, I. D., On fitting generalized linear and non-linear models of mortality, Scandinavian Actuarial Journal, 2016, 356-383, (2016) · Zbl 1401.91123
[13] Currie, I. D.; Durban, M.; Eilers, P. H., Smoothing and forecasting mortality rates, Statistical Modelling, 4, 279-298, (2004) · Zbl 1061.62171
[14] Czado, C.; Delwarde, A.; Denuit, M., Bayesian poisson log-bilinear mortality projections, Insurance: Mathematics and Economics, 36, 260-284, (2005) · Zbl 1110.62142
[15] Debón, A.; Martínez-Ruiz, F.; Montes, F., A geostatistical approach for dynamic life tables: The effect of mortality on remaining lifetime and annuities, Insurance: Mathematics and Economics, 47, 327-336, (2010) · Zbl 1231.91173
[16] Delwarde, A.; Denuit, M.; Eilers, P., Smoothing the Lee-Carter and Poisson log-bilinear models for mortality forecasting a penalized log-likelihood approach, Statistical Modelling, 7, 29-48, (2007)
[17] Dokumentov, A.; Hyndman, R. J., (2014)
[18] Girosi, F.; King, G., Demographic Forecasting, (2008), Princeton, NJ: Princeton University Press, Princeton, NJ
[19] Gramacy, R.; Taddy, M., Tgp, an R package for treed Gaussian process models., Journal of Statistical Software, 33, 1-48, (2012)
[20] Hunt, A.; Blake, D., A general procedure for constructing mortality models, North American Actuarial Journal, 18, 116-138, (2014)
[21] Hyndman, R. J.; Ullah, M. S., Robust forecasting of mortality and fertility rates: a functional data approach, Computational Statistics & Data Analysis, 51, 4942-4956, (2007) · Zbl 1162.62434
[22] Lee, M. R.; Owen, A. B., (2015)
[23] Lee, R. D.; Carter, L. R., Modeling and forecasting US mortality, Journal of the American Statistical Association, 87, 659-671, (1992) · Zbl 1351.62186
[24] Li, H.; O’Hare, C., (2015)
[25] Ludkovski, M., (2015)
[26] Mitchell, D.; Brockett, P.; Mendoza-Arriaga, R.; Muthuraman, K., Modeling and forecasting mortality rates, Insurance: Mathematics and Economics, 52, 275-285, (2013) · Zbl 1284.91259
[27] Picheny, V.; Ginsbourger, D., A nonstationary space-time Gaussian process model for partially converged simulations, SIAM/ASA Journal on Uncertainty Quantification, 1, 57-78, (2013) · Zbl 1291.60075
[28] Purushotham, M.; Valdez, E.; Wu, H., (2011)
[29] Renshaw, A.; Haberman, S.; Hatzopoulos, P., The modelling of recent mortality trends in united kingdom male assured lives, British Actuarial Journal, 2, 449-477, (1996)
[30] Renshaw, A. E.; Haberman, S., Lee-Carter mortality forecasting with age-specific enhancement, Insurance: Mathematics and Economics, 33, 255-272, (2003) · Zbl 1103.91371
[31] Renshaw, A. E.; Haberman, S., A cohort-based extension to the Lee-Carter model for mortality reduction factors, Insurance: Mathematics and Economics, 38, 556-570, (2006) · Zbl 1168.91418
[32] Riihimäki, J.; Vehtari, A., (2010)
[33] Rosner, B.; Raham, C.; Orduña, F.; Chan, M.; Xue, L.; Zak, B.; Yang, G., (2013)
[34] Roustant, O., Dicekriging, Diceoptim: Two R packages for the analysis of computer experiments by Kriging-based metamodeling and optimization, Journal of Statistical Software, 51, 1-55, (2012)
[35] Salemi, P.; Staum, J.; Nelson, B. L., Proceedings of the 2013 Winter Simulation Conference, Generalized integrated Brownian fields for simulation metamodeling, 543-554, (2013), IEEE Press
[36] Sithole, T. Z.; Haberman, S.; Verrall, R. J., An investigation into parametric models for mortality projections, with applications to immediate annuitants and life office pensioners data, Insurance: Mathematics and Economics, 27, 285-312, (2000) · Zbl 1055.62555
[37] (2014)
[38] (2014)
[39] (2015)
[40] Villegas, A. M.; Kaishev, V. K.; Millossovich, P., (2015)
[41] Whittaker, E. T., On a new method of graduation., Proceedings of the Edinburgh Mathematical Society, 41, 63-75, (1922)
[42] Williams, C. K.; Rasmussen, C. E., Gaussian Processes for Machine Learning, (2006), Massachusetts: The MIT Press, Massachusetts · Zbl 1177.68165
[43] Wilmoth, J. R.; Shkolnikov, V., (2010)
[44] Wu, R., (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.