×

Moment tensor potentials: a class of systematically improvable interatomic potentials. (English) Zbl 1403.70008

Summary: Density functional theory offers a very accurate way of computing materials properties from first principles. However, it is too expensive for modeling large-scale molecular systems whose properties are, in contrast, computed using interatomic potentials. The present paper considers, from a mathematical point of view, the problem of constructing interatomic potentials that approximate a given quantum-mechanical interaction model. In particular, a new class of systematically improvable potentials is proposed, analyzed, and tested on an existing quantum-mechanical database.

MSC:

70G10 Generalized coordinates; event, impulse-energy, configuration, state, or phase space for problems in mechanics
68Q32 Computational learning theory

Software:

mftoolbox
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] X. Ai, Y. Chen, and C. A. Marianetti, {\it Slave mode expansion for obtaining ab initio interatomic potentials}, Phys. Rev. B, 90 (2014), 014308.
[2] E. Alpaydin, {\it Introduction to Machine Learning}, MIT Press, Cambridge, MA, 2014. · Zbl 1298.68002
[3] A. P. Bartók, R. Kondor, and G. Csányi, {\it On representing chemical environments}, Phys. Rev. B, 87 (2013), 184115.
[4] A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, {\it Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons}, Phys. Rev. Lett., 104 (2010), 136403.
[5] F. L. Bauer and C. T. Fike, {\it Norms and exclusion theorems}, Numer. Math., 2 (1960), pp. 137-141. · Zbl 0101.25503
[6] J. Behler, {\it Atom-centered symmetry functions for constructing high-dimensional neural network potentials}, J. Chemical Phys., 134 (2011), 074106.
[7] J. Behler, {\it Representing potential energy surfaces by high-dimensional neural network potentials}, J. Phys. Condensed Matter, 26 (2014), 183001.
[8] J. Behler and M. Parrinello, {\it Generalized neural-network representation of high-dimensional potential-energy surfaces}, Phys. Rev. Lett., 98 (2007), 146401.
[9] B. J. Braams and J. M. Bowman, {\it Permutationally invariant potential energy surfaces in high dimensionality}, Internat. Rev. Phys. Chemistry, 28 (2009), pp. 577-606.
[10] E. Cances, M. Defranceschi, W. Kutzelnigg, C. Le Bris, and Y. Maday, {\it Computational quantum chemistry: A primer}, in Computational Chemistry, Handb. Numer. Anal., 10, P. G. Ciarlet and C. L. Bris, Eds., Elsevier, Amsterdam, 2003, pp. 3-270. · Zbl 1070.81534
[11] H. Chen and C. Ortner, {\it QM/MM methods for crystalline defects. Part 1: Locality of the tight binding model}, Multiscale Model. Simul., 14 (2016), pp. 232-264. · Zbl 1381.81012
[12] H. Chen and C. Ortner, {\it QM/MM Methods for Crystalline Defects. Part 2: Consistent Energy and Force-Mixing}, preprint, arXiv:1509.06627, 2015.
[13] G. Ferré, J.-B. Maillet, and G. Stoltz, {\it Permutation-invariant distance between atomic configurations}, J. Chemical Phys., 143 (2015), 104114.
[14] M. Finnis, {\it Interatomic Forces in Condensed Matter}, Vol. 1, Oxford University Press, Oxford, UK, 2003.
[15] M. Griebel, S. Knapek, and G. Zumbusch, {\it Numerical Simulation in Molecular Dynamics: Numerics, Algorithms, Parallelization, Applications}, Vol. 5, Springer Science & Business Media, New York, 2007. · Zbl 1131.76001
[16] W. Hackbusch and B. N. Khoromskij, {\it Towards \(\mathcal{H} \)-matrix approximation of the linear complexity}, in Problems and Methods in Mathematical Physics, Oper. Theory Adv. Appl. 121, Birkhäuser Verlag, Basel, 2001, pp. 194-220. · Zbl 1004.65125
[17] O. Hellman, P. Steneteg, I. A. Abrikosov, and S. I. Simak, {\it Temperature dependent effective potential method for accurate free energy calculations of solids}, Phys. Rev. B, 87 (2013), 104111.
[18] N. J. Higham, {\it Functions of Matrices: Theory and Computation}, SIAM, Philadelphia, 2008. · Zbl 1167.15001
[19] M. Hirn, N. Poilvert, and S. Mallat, {\it Quantum Energy Regression Using Scattering Transforms}, preprint, arXiv:1502.02077, 2015. · Zbl 1365.42030
[20] J. Jalkanen and M. H. Müser, {\it Systematic analysis and modification of embedded-atom potentials: Case study of copper}, Model. Simul. Materials Sci. Eng., 23 (2015), 074001.
[21] Z. Li, J. R. Kermode, and A. De Vita, {\it Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces}, Phys. Rev. lett., 114 (2015), 096405.
[22] S. Linnainmaa, {\it Taylor expansion of the accumulated rounding error}, BIT, 16 (1976), pp. 146-160. · Zbl 0332.65024
[23] F. Q. Nazar and C. Ortner, {\it Locality of the Thomas-Fermi-von Weizsäcker Equations}, preprint, arXiv:1509.06753, 2015. · Zbl 1368.35229
[24] L. J. Nelson, V. Ozoliņš, C. S. Reese, F. Zhou, and G. L. W. Hart, {\it Cluster expansion made easy with Bayesian compressive sensing}, Phys. Rev. B, 88 (2013), 155105.
[25] G. Szegö, {\it Orthogonal Polynomials}, Vol. 23, AMS, Providence, RI, 1939. · Zbl 0023.21505
[26] W. J. Szlachta, {\it First Principles Interatomic Potential for Tungsten Based on Gaussian Process Regression}, preprint, arXiv:1403.3291, 2014.
[27] W. J. Szlachta, A. P. Bartók, and G. Csányi, {\it Accuracy and transferability of Gaussian approximation potential models for tungsten}, Phys. Rev. B, 90 (2014), 104108.
[28] A. P. Thompson, L. P. Swiler, C. R. Trott, S. M. Foiles, and G. J. Tucker, {\it SNAP: Automated generation of quantum-accurate interatomic potentials}, J. Comput. Phys., 285 (2015), pp. 316-330. · Zbl 1351.81109
[29] R. Tibshirani, {\it Regression shrinkage and selection via the lasso}, J. R. Stat. Soc. Ser. B Methodol., 58 (1996), pp. 267-288. · Zbl 0850.62538
[30] H. Weyl, {\it The Classical Groups: Their Invariants and Representations}, Princeton Landmarks in Mathematics and Physics, Princeton University Press, Princeton, NJ, 1997. · Zbl 1024.20501
[31] Y. Zhang, {\it Theory of compressive sensing via \(ℓ_1\)-minimization: A non-rip analysis and extensions}, J. Oper. Res. Soc. China, 1 (2013), pp. 79-105. · Zbl 1288.65091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.