×

An interaction integral and a modified crack closure integral for evaluating piezoelectric crack-tip fracture parameters in BEM. (English) Zbl 1403.74186

Summary: To evaluate the crack-tip field intensity factors of a piezoelectric crack with any inclined angle, the current widely-used interaction integral method (I-integral) is here extended to the boundary element applications under some coordinate transformations. As well, a new modified crack closure integral method (MCCI) is proposed by considering the discontinuous quarter-point singular elements for the crack-face discretization arising from the dual boundary element method (BEM). This dual BEM involves the strongly singular displacement boundary integral equations (BIEs) for the external boundary and the hypersingular traction BIEs for the crack faces. The crack-tip fracture parameters evaluated by the I-integral and MCCI are verified by the existing analytical solutions and meanwhile, compared with those results achieved by the classical displacement extrapolation method and the J-integral. Three examples are presented to show the high accuracy of the interaction integral method and the improvement of MCCI for the piezoelectric crack problems.

MSC:

74S15 Boundary element methods applied to problems in solid mechanics
65N38 Boundary element methods for boundary value problems involving PDEs
74F15 Electromagnetic effects in solid mechanics
74R10 Brittle fracture
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Belytschko, T.; Black, T., Elastic crack growth in finite elements with minimal remeshing, Int J Numer Methods Eng, 45, 601-620, (1999) · Zbl 0943.74061
[2] Blandford, G. E.; Ingraffea, A. R.; Liggett, J. A., Two-dimensional stress intensity factor computations using the boundary element method, Int J Numer Methods Eng, 17, 387-404, (1981) · Zbl 0463.73082
[3] Deeg, W. F., The analysis of dislocation, crack, and inclusion problems in piezoelectric solids, (1980), Stanford University, [Ph.D. thesis]
[4] Denda, M.; Mansukh, M., Upper and lower bounds analysis of electric induction intensity factors for multiple piezoelectric cracks by the BEM, Eng Anal Bound Elem, 29, 533-550, (2005) · Zbl 1182.74057
[5] Ding, H.; Chen, W. Q.; Jiang, A. M., Green’s functions and boundary element method for transversely isotropic piezoelectric materials, Eng Anal Bound Elem, 28, 975-987, (2004) · Zbl 1112.74550
[6] Dominguez J. Boundary elements in dynamics. Computational mechanics publications. Southampton & Elsevier Applied Science, London; 1993.
[7] Enderlein, M.; Ricoeur, A.; Kuna, M., Finite element techniques for dynamic crack analysis in piezoelectrics, Int J Fract, 134, 191-208, (2005) · Zbl 1196.74264
[8] García-Sánchez, F.; Sáez, A.; Domínguez, J., Anisotropic and piezoelectric materials fracture analysis by BEM, Comput Struct, 83, 804-820, (2005)
[9] Gu, B.; Yu, S. W.; Feng, X. Q., Transient response of an interface crack between dissimilar piezoelectric layers under mechanical impacts, Int J Solids Struct, 2002, 39, 1743-1756, (2002) · Zbl 1040.74042
[10] Irwin, G. R., Fracture, (Flugge, S., Handbuch der Physik VI, (1958), Springer-Verlag Berlin, Germany), 551-590, (in German)
[11] Kuna, M., Finite element analyses of cracks in piezoelectric structures: a survey, Arch Appl Mech, 76, 725-745, (2006) · Zbl 1161.74474
[12] Lei, J.; Wang, H.; Zhang, Ch.; Bui, T.; Garcia-Sanchez, F., Comparison of several BEM-based approaches in evaluating crack-tip field intensity factors in piezoelectric materials, Int J Fract, 189, 111-120, (2014)
[13] Maiti, S. K.; Mukhopadhyay, N. K.; Kakodkar, A., Boundary element method based computation of stress intensity factor by modified crack closure integral, Comput Mech, 19, 203-210, (1997) · Zbl 1031.74530
[14] Martinez, J.; Dominguez, J., On the use of quarter-point boundary elements for stress intensity factor computations, Int J Numer Methods Eng, 20, 1941-1950, (1984) · Zbl 0539.73123
[15] Mukhopadhyay, N. K.; Maiti, S. K.; Kakodkar, A., Modified crack closure integral based computation of SIFs for 2-D thermoelastic problems through BEM, Nucl Eng Des, 187, 277-290, (1999)
[16] Mukhopadhyay, N. K.; Maiti, S. K.; Kakodkar, A., A review of SIF evaluation and modelling of singularities in BEM, Comput Mech, 25, 358-375, (2000) · Zbl 0964.74076
[17] Nishioka, T.; Shen, S. P.; Yu, J. H., Dynamic J integral, separated dynamic J integral and component separation method for dynamic interfacial cracks in piezoelectric biomaterials, Int J Fract, 122, 101-130, (2003)
[18] Pak, Y. E., Crack extension force in a piezoelectric material, J Appl Mech, 57, 647-653, (1990) · Zbl 0724.73191
[19] Pak, Y. E., Linear electro-elastic fracture mechanics of piezoelectric materials, Int J Fract, 54, 79-100, (1992)
[20] Pan, E., A BEM analysis of fracture mechanics in 2D anisotropic piezoelectric solids, Eng Anal Bound Elem, 23, 67-76, (1999) · Zbl 1062.74639
[21] Portela, A.; Atiabadi, M. H.; Rooke, D. P., The dual boundary element method: effective implementation for crack problems, Int J Numer Methods Eng, 33, 1269-1287, (1992) · Zbl 0825.73908
[22] Rajapakse, R. K.N. D.; Xu, X. L., Boundary element modeling of cracks in piezoelectric solids, Eng Anal Bound Elem, 25, 771-781, (2001) · Zbl 1102.74333
[23] Ramamurthy, T. S.; Krishnamurthy, T.; Narayan, K. Badri; Vijayakumar, K.; Duttaguru, B., Modified crack closure integral methods with quarter point elements, Mech Res Commun, 13, 179-186, (1986)
[24] Rao, B. N.; Kuna, M., Interaction integrals for fracture analysis of functionally graded magnetoelectroelastic materials, Int J Fract, 153, 15-37, (2008) · Zbl 1273.74479
[25] Rice, J. R., A path independent integral and the approximate analysis of strain concentration by notches and cracks, J Appl Mech, 35, 379-386, (1968)
[26] Rybicki, E. F.; Kanninen, M. F., A finite element calculation of stress intensity factors by a modified crack closure integral, Eng Fract Mech, 9, 931-938, (1977)
[27] Sethuraman, R.; Maiti, S. K., Finite element based computation of strain energy release rate by modified crack closure integral, Eng Fract Mech, 30, 227-231, (1988)
[28] Sollero, P.; Aliabadi, M. H., Fracture mechanics analysis of anisotropic plates by the boundary element method, Int J Fract, 64, 269-284, (1993)
[29] Stern, M.; Becker, E. B.; Dunham, R. S., A contour integral computation of mixed-mode stress intensity factors, Int J Fract, 12, 359-368, (1976)
[30] Stroh, A. N., Steady state problems in anisotropic elasticity, J Math Phys, 41, 77-103, (1962) · Zbl 0112.16804
[31] Suo, Z.; Kuo, C. M.; Barnett, D. M.; Willis, J. R., Fracture mechanics for piezoelectric ceramics, J Mech Phys Solids, 40, 739-765, (1992) · Zbl 0825.73584
[32] Tian, W.; Rajapakse, R., Fracture analysis of magnetoelectroelastic solids by using path independent integrals, Int J Fract, 131, 311-335, (2005) · Zbl 1196.74217
[33] Wang, S. S.; Yau, J. F.; Corten, H. T., A mixed-mode crack analysis of rectilinear anisotropic solids using conservation laws of elasticity, Int J Fract, 16, 247-259, (1980) · Zbl 0463.73103
[34] Yu, H.; Wu, L.; Guo, L.; Ma, J.; Li, H., A domain-independent interaction integral for fracture analysis of nonhomogeneous piezoelectric materials, Int J Solids Struct, 49, 3301-3315, (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.