A coupled FE-BIE model for the static analysis of Timoshenko beams bonded to an orthotropic elastic half-plane. (English) Zbl 1403.74240

Summary: Interface displacements, surface tractions and stresses of a flexible beam bonded to an elastic orthotropic half-plane are analysed by means of a Finite Element-Boundary Integral Equation (FE-BIE) method. Numerical results are obtained by using locking-free shear deformable beams and piecewise constant interfacial reactions. Making use of the generalised Green’s function for the half-plane, the mechanical behaviour of fully bonded or detached beams subjected to force, couple or thermal load is investigated. The special cases of a beam in bilateral frictionless contact with the half-plane and a beam having a vanishing bending rigidity (thin film) are considered also. In particular, the maximum bending moment of beams subjected to a vertical point force are compared with some closed-form solutions of the contact problem of a rigid indenter and with the solution of an infinite Euler-Bernoulli beam in bilateral frictionless contact with an isotropic substrate.


74S15 Boundary element methods applied to problems in solid mechanics
65N38 Boundary element methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74M15 Contact in solid mechanics
Full Text: DOI


[1] Teng, J. G.; Chen, J. F.; Smith, S. T.; Lam, L., FRP strengthened RC structures, (2001), John Wiley & Sons Chichester
[2] Zhao, X.-L., FRP-strengthened metallic structures, (2014), CRC Press Boca Raton
[3] Schobera, K.-U.; Harteb, A. M.; Kligerc, R.; Jockwerd, R.; Xue, Q.; Chenf, J.-F., FRP reinforcement of timber structures, Constr Build Mater, 97, 106-118, (2015)
[4] Galin, L. A., Contact problems. the legacy of L.A. galin, (2008), Springer Netherlands · Zbl 1152.74031
[5] Johnson, K. L., Contact mechanics, (1985), Cambridge University Press Cambridge · Zbl 0599.73108
[6] Kachanov, M. L.; Shafiro, B.; Tsukrov, I., Handbook of elasticity solutions, (2003), Kluwer Academic Publishers Dordrecht
[7] Lekhnitskii, S. G., Theory of elasticity of an anisotropic body, (1977), MIR Publishers Moscow · Zbl 0467.73012
[8] Gladwell, G. M.L., Contact problems in the classical theory of elasticity, (1980), Sijthoff & Noordhoff The Netherlands · Zbl 0431.73094
[9] Willis, J. R., The elastic interaction energy of dislocation loops in anisotropic media, Q J Mech Appl Math, 18, 4, 419-433, (1965)
[10] Pan, Y. C.; Chou, T. W., Point force solution for an infinite transversely isotropic solid, J Appl Mech ASME, 43, 4, 608-612, (1976) · Zbl 0352.73016
[11] Pan, Y. C.; Chou, T. W., Green’s functions for two-phase transversely isotropic materials, J Appl Mech ASME, 46, 3, 551-556, (1979) · Zbl 0406.73020
[12] Wu, R. S.; Chou, Y. T., Line force in a two-phase orthotropic medium, J Appl Mech ASME, 49, 55-61, (1982) · Zbl 0482.73008
[13] Lin, W.; Kuo, C. H.; Keer, L. M., Analysis of a transversely isotropic half-space under normal and tangential loadings, J Tribol ASME, 113, 4, 335-338, (1991)
[14] Lanzoni, L.; Radi, E., Thermally induced deformations in a partially coated elastic layer, Int J Solids Struct, 46, 6, 1402-1412, (2009) · Zbl 1236.74066
[15] Lanzoni, L., Analysis of stress singularities in thin coatings bonded to a semi-infinite elastic substrate, Int J Solids Struct, 48, 13, 1915-1926, (2011)
[16] Lanzoni, L.; Radi, E., A loaded Timoshenko beam bonded to an elastic half plane, Int J Solids Struct, 92-93, 76-90, (2016)
[17] Gallagher, A. P., Bending of a free beam on an elastic foundation, J Appl Mech ASME, 50, 2, 463-465, (1983) · Zbl 0549.73098
[18] Shield, T. W.; Kim, K. S., Beam theory models for thin film segments cohesively bonded to an elastic half space, Int J Solids Struct, 29, 9, 1085-1103, (1992) · Zbl 0787.73071
[19] Li, H.; Dempsey, J. P., Unbonded contact of finite Timoshenko beam on elastic layer, J Eng Mech, 114, 8, 1265-1284, (1988)
[20] Zhang, Y.-M.; Gu, Y.; Chen, J.-T., Internal stress analysis for single and multilayered coating systems using the boundary element method, Eng Anal Bound Elem, 35, 4, 708-717, (2011) · Zbl 1259.74076
[21] Freund, L. B.; Suresh, S., Thin film materials. stress, defect formation and surface evolution, (2008), Cambridge University Press Cambridge · Zbl 1158.74002
[22] Bush, M. B., Simulation of contact-induced fracture, Eng Anal Bound Elem, 23, 1, 59-66, (1999) · Zbl 0970.74075
[23] Rudas, M.; Bush, M. B.; Reimanis, I. E., The kinking behaviour of a bimaterial interface crack under indentation loading, Eng Anal Bound Elem, 28, 12, 1455-1462, (2004) · Zbl 1182.74194
[24] Ribeiro, D. B.; Paiva, J. B., An alternative BE-FE formulation for a raft resting on a finite soil layer, Eng Anal Bound Elem, 50, 352-359, (2015) · Zbl 1403.74058
[25] Luo, J. F.; Liu, Y. J.; Berger, E. J., Analysis of two-dimensional thin structures (from micro-to nano-scales) using the boundary element method, Comput Mech, 22, 5, 404-412, (1998) · Zbl 0938.74075
[26] Gu, Y.; Chen, W.; Zhang, B., Stress analysis for two-dimensional thin structural problems using the meshless singular boundary method, Eng Anal Bound Elem, 59, 1-7, (2015) · Zbl 1403.74057
[27] Cheung, Y. K.; Zienkiewicz, O. C., Plates and tanks on elastic foundations - an application of finite element method, Int J Solids Struct, 1, 4, 451-461, (1965)
[28] Cheung, Y. K.; Nag, D. K., Plates and beams on elastic foundation - linear and non-linear behaviour, Geotechnique, 18, 2, 250-260, (1968)
[29] Tezzon, E.; Tullini, N.; Minghini, M., Static analysis of shear flexible beams and frames in adhesive contact with an isotropic elastic half-plane using a coupled FE-BIE model, Eng Struct, 104, 32-50, (2015)
[30] Tullini, N.; Tralli, A., Static analysis of Timoshenko beam resting on elastic half-plane based on the coupling of locking-free finite elements and boundary integral, Comput Mech, 45, 2-3, 211-225, (2010) · Zbl 1271.74271
[31] Tullini, N.; Tralli, A.; Lanzoni, L., Interfacial shear stress analysis of bar and thin film bonded to 2D elastic substrate using a coupled FE-BIE method, Finite Elem Anal Des, 55, 42-51, (2012)
[32] Tullini, N.; Tralli, A.; Baraldi, D., Stability of slender beams and frames resting on 2D elastic half-space, Arch Appl Mech, 83, 3, 467-482, (2013) · Zbl 1293.74131
[33] Tullini, N.; Tralli, A.; Baraldi, D., Buckling of Timoshenko beams in frictionless contact with an elastic half-plane, J Eng Mech, 139, 7, 824-831, (2013)
[34] Reinoso, J.; Paggi, M.; Rolfes, R., A computational framework for the interplay between delamination and wrinkling in functionally graded thermal barrier coatings, Comput Mater Sci, 116, 82-95, (2016)
[35] Cowper, G. R., The shear coefficient in Timoshenko’s beam theory, J Appl Mech ASME, 33, 335-340, (1966) · Zbl 0151.37901
[36] Tullini, N.; Savoia, M., Elasticity interior solution for orthotropic strips and the accuracy of beam theories, J Appl Mech, 66, 368-373, (1999)
[37] Gurtin, M. E.; Sternberg, E., Theorems in linear elastostatics for exterior domains, Arch Ration Mech Anal, 8, 99-119, (1961) · Zbl 0101.17001
[38] Narayanaswami, R.; Adelman, H. M., Inclusion of transverse shear deformation in finite element displacement formulations, AIAA J, 12, 11, 1613-1614, (1974)
[39] Friedman, Z.; Kosmatka, J. B., An improved two-node Timoshenko beam finite element, Comput Struct, 47, 3, 473-481, (1993) · Zbl 0775.73249
[40] Reddy, J. N., On locking-free shear deformable beam finite elements, Comput Methods Appl Mech Eng, 149, 1-4, 113-132, (1997) · Zbl 0918.73131
[41] Minghini, F.; Tullini, N.; Laudiero, F., Locking-free finite elements for shear deformable orthotropic thin-walled beams, Int J Numer Methods Eng, 72, 7, 808-834, (2007) · Zbl 1194.74446
[42] Biot, M. A., Bending of an infinite beam on an elastic foundation, J Appl Mech, 4, A1-A7, (1937)
[43] Vesic, A. B., Bending of beams on isotropic elastic medium, J Eng Mech Div ASCE, 87, EM2, 35-53, (1961)
[44] Grigolyuk, E. I.; Tolkachev, V. M., Contact problems in the theory of plates and shells, (1987), Mir Publishers Moscow
[45] Forest Products Laboratory, Wood handbook. wood as an engineering material. general technical report FPL-GTR-190, (2010), US Department of Agriculture, Forest Service, Forest Products Laboratory Madison, WI
[46] Kolar, V.; Nemec, I., Modelling of soil-structure interaction. developments in geotechnical engineering 58, (1989), Elsevier Amsterdam
[47] Thomsen, L., Weak elastic anisotropy, Geophysics, 51, 10, 1954-1966, (1986)
[48] Yimsiri, S.; Soga, K., Cross-anisotropic elastic parameters of two natural stiff clays, Geotechnique, 61, 9, 809-814, (2011)
[49] Ratananikom, W.; Likitlersuang, S.; Yimsiri, S., An investigation of anisotropic elastic parameters of Bangkok Clay from vertical and horizontal cut specimens, Geomech Geoeng, 8, 1, 15-27, (2013)
[50] Bellotti, R.; Jamiolkowski, M.; Lo Presti, D. C.F.; O’Neill, D. A., Anisotropy of small strain stiffness in ticino sand, Geotechnique, 46, 1, 115-131, (1996)
[51] Schadlich, B.; Schweiger, H. F., Influence of anisotropic small strain stiffness on the deformation behavior of geotechnical structures, Int J Geomech, 13, 861-868, (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.