×

Landauer’s principle for trajectories of repeated interaction systems. (English) Zbl 1403.81031

In this manuscript the authors consider Landauer’s principle for trajectories of the repeated interaction systems. A special case of the repeated interaction systems with the sampled parameters of the probes, the so-called adiabatic repeated system, is described. Two random variables \(\Delta y_T^{tot}\) and \(\Delta s_{S,T}\) are considered and their properties are derived and discussed. Beside this, the limiting distribution of the pair of the above random variables is derived when \(T\) tends to infinity. The manuscript ends with the proof of the large deviation principle and conclusion about a law of large numbers a central limit theorem.

MSC:

81S22 Open systems, reduced dynamics, master equations, decoherence
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
82C35 Irreversible thermodynamics, including Onsager-Machlup theory
81P68 Quantum computation
60F10 Large deviations
60F05 Central limit and other weak theorems

Citations:

Zbl 1380.81179

Software:

TRX23; Matlab
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aharonov, Y; Bergmann, PG; Lebowitz, JL, Time symmetry in the quantum process of measurement, Phys. Rev., 2, b1410-b1416, (1964) · Zbl 0127.43703 · doi:10.1103/PhysRev.134.B1410
[2] Benoist, T., Jakšić, V., Pautrat, Y., Pillet, C.-A.: On entropy production of repeated quantum measurements II. Examples (2018) (In preparation) · Zbl 1393.81008
[3] Bickel, P.J., Doksum, K.A.: Mathematical Statistics—Basic Ideas and Selected Topics. Texts in Statistical Science Series, vol. 1, 2nd edn. CRC Press, Boca Raton (2015) · Zbl 1380.62002
[4] Benoist, T; Fraas, M; Jakšić, V; Pillet, C-A, Full statistics of erasure processes: isothermal adiabatic theory and a statistical Landauer principle, Rev. Roum. Math. Pures Appl., 62, 259-286, (2017) · Zbl 1389.81010
[5] Bhatia, R.: Matrix Analysis, Graduate Texts in Mathematics, vol. 169. Springer, New York (1997)
[6] Billingsley, P.: Probability and Measure. Wiley Series in Probability and Mathematical Statistics, 3rd edn. Wiley, New York (1995) · Zbl 0822.60002
[7] Bruneau, L; Joye, A; Merkli, M, Random repeated interaction quantum systems, Commun. Math. Phys., 284, 553-581, (2008) · Zbl 1165.82018 · doi:10.1007/s00220-008-0580-8
[8] Bruneau, L; Joye, A; Merkli, M, Repeated interactions in open quantum systems, J. Math. Phys., 55, 075204, (2014) · Zbl 1298.81131 · doi:10.1063/1.4879240
[9] Benoist, T; Jakšić, V; Pautrat, Y; Pillet, C-A, On entropy production of repeated quantum measurements I. general theory, Commun. Math. Phys., 357, 77-123, (2018) · Zbl 1393.81008 · doi:10.1007/s00220-017-2947-1
[10] Bryc, W, A remark on the connection between the large deviation principle and the central limit theorem, Stat. Probab. Lett., 18, 253-256, (1993) · Zbl 0797.60026 · doi:10.1016/0167-7152(93)90012-8
[11] Cuneo, N., Jakšić, V., Pillet, C.-A., Shirikyan, A.: Fluctuation Theorem and Thermodynamic Formalism. arXiv preprint (2017). arXiv:1712.05167 · Zbl 1253.82052
[12] Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, Hoboken (2006) · Zbl 1140.94001
[13] Cubitt, T.: Bi/tripartite partial trace. http://www.dr-qubit.org/matlab.html (2009). Mathematica package. Accessed Apr 2018
[14] Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability. Corrected reprint of the second (1998) edition, vol. 38. Springer, Berlin (2010) · Zbl 1177.60035 · doi:10.1007/978-3-642-03311-7
[15] Evans, DE; Høegh-Krohn, R, Spectral properties of positive maps on \(C^*\)-algebras, J. Lond. Math. Soc. (2), 17, 345-355, (1978) · Zbl 0384.46042 · doi:10.1112/jlms/s2-17.2.345
[16] Esposito, M; Harbola, U; Mukamel, S, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems, Rev. Mod. Phys., 81, 1665-1702, (2009) · Zbl 1205.82097 · doi:10.1103/RevModPhys.81.1665
[17] Ellis, R.S.: Entropy, Large Deviations, and Statistical Mechanics. Grundlehren der mathematischen Wissenschaften, vol. 271. Springer, New York (1985) · Zbl 0566.60097 · doi:10.1007/978-1-4613-8533-2
[18] Fagnola, F; Pellicer, R, Irreducible and periodic positive maps, Commun. Stoch. Anal., 3, 407-418, (2009) · Zbl 1331.46052
[19] Guarnieri, G; Campbell, S; Goold, J; Pigeon, S; Vacchini, B; Paternostro, M, Full counting statistics approach to the quantum non-equilibrium Landauer bound, J. Phys., 19, 103038, (2017)
[20] Hanson, EP; Joye, A; Pautrat, Y; Raquépas, R, Landauer’s principle in repeated interaction systems, Commun. Math. Phys., 349, 285-327, (2017) · Zbl 1380.81179 · doi:10.1007/s00220-016-2751-3
[21] Hiai, F; Mosonyi, M; Ogawa, T, Large deviations and Chernoff bound for certain correlated states on a spin chain, J. Math. Phys., 48, 123301, (2007) · Zbl 1153.81375 · doi:10.1063/1.2812417
[22] Horowitz, JM; Parrondo, JMR, Entropy production along nonequilibrium quantum jump trajectories, J. Phys., 15, 085028, (2013)
[23] Jakšić, V., Ogata, Y., Pautrat, Y., Pillet, C.-A.: Entropic fluctuations in quantum statistical mechanics. An introduction. In: Frohlich, J., Salmhofer, M., Mastropietro, V., De Roeck, W., Cugliandolo, L.F. (eds.) Quantum Theory from Small to Large Scales. Lecture Notes of the Les Houches Summer School, vol. 95, pp. 213-410. Oxford University Press (2012) · Zbl 1291.82001
[24] Jakšić, V; Ogata, Y; Pillet, C-A; Seiringer, R, Quantum hypothesis testing and non-equilibrium statistical mechanics, Rev. Math. Phys, 24, 1230002, 67, (2012) · Zbl 1253.82052
[25] Jakšić, V; Pillet, C-A, A note on the Landauer principle in quantum statistical mechanics, J. Math. Phys., 55, 075210-075210:21, (2014) · Zbl 1298.81132 · doi:10.1063/1.4884475
[26] Jakšić, V; Pillet, C-A; Westrich, M, Entropic fluctuations of quantum dynamical semigroups, J. Stat. Phys., 154, 153-187, (2014) · Zbl 1291.82066
[27] Kato, T.: Perturbation Theory for Linear Operators, Classics in Mathematics. Springer, New York (1976)
[28] Kurchan, J.: A quantum fluctuation theorem. arXiv preprint (2000). arXiv:cond-mat/0007360
[29] Landauer, R, Irreversibility and heat generation in the computing process, IBM J. Res. Dev., 5, 183-191, (1961) · Zbl 1160.68305 · doi:10.1147/rd.53.0183
[30] Meschede, D; Walther, H; Müller, G, One-atom maser, Phys. Rev. Lett., 54, 551-554, (1985) · doi:10.1103/PhysRevLett.54.551
[31] Reeb, D; Wolf, MM, An improved Landauer principle with finite-size corrections, J. Phys., 16, 103011, (2014)
[32] Tasaki, H.: Jarzynski relations for quantum systems and some applications. arXiv preprint (2000). arXiv:cond-mat/0009244
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.