×

The rational parameterisation theorem for multisite post-translational modification systems. (English) Zbl 1403.92085

Summary: Post-translational modification of proteins plays a central role in cellular regulation but its study has been hampered by the exponential increase in substrate modification forms (“modforms”) with increasing numbers of sites. We consider here biochemical networks arising from post-translational modification under mass-action kinetics, allowing for multiple substrates, having different types of modification (phosphorylation, methylation, acetylation, etc.) on multiple sites, acted upon by multiple forward and reverse enzymes (in total number \(L\)), using general enzymatic mechanisms. These assumptions are substantially more general than in previous studies. We show that the steady-state modform concentrations constitute an algebraic variety that can be parameterised by rational functions of the \(L\) free enzyme concentrations, with coefficients which are rational functions of the rate constants. The parameterisation allows steady states to be calculated by solving \(L\) algebraic equations, a dramatic reduction compared to simulating an exponentially large number of differential equations. This complexity collapse enables analysis in contexts that were previously intractable and leads to biological predictions that we review. Our results lay a foundation for the systems biology of post-translational modification and suggest deeper connections between biochemical networks and algebraic geometry.

MSC:

92C40 Biochemistry, molecular biology
92C42 Systems biology, networks
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Angeli, D.; Ferrell, J.E.; Sontag, E.D., Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems, Proc. natl. acad. sci. USA, 101, 1822-1827, (2004)
[2] Christopher, C.J.; Lloyd, N.G., Polynomial systems: a lower bound for the Hilbert numbers, Proc. roy. soc. London A, 450, 219-224, (1995) · Zbl 0839.34033
[3] Chung, F.R.K., 1997. Spectral graph theory. In: Regional Conference Series in Mathematics, vol. 92. American Mathematical Society, Providence, RI.; Chung, F.R.K., 1997. Spectral graph theory. In: Regional Conference Series in Mathematics, vol. 92. American Mathematical Society, Providence, RI. · Zbl 0867.05046
[4] Ciliberto, A.; Capuani, F.; Tyson, J.J., Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation, Plos comput. biol., 3, e45, (2007)
[5] Cornish-Bowden, A., Fundamentals of enzyme kinetics, (1995), Portland Press London, UK
[6] Cox, D.; Little, J.; O’Shea, D., Ideals, varieties and algorithms, (1997), Springer Berlin
[7] Craciun, G., Dickenstein, A., Shiu, A., Sturmfels, B., 2009. Toric dynamical systems. J. Symbolic Comput. 44, 1551-1565.; Craciun, G., Dickenstein, A., Shiu, A., Sturmfels, B., 2009. Toric dynamical systems. J. Symbolic Comput. 44, 1551-1565. · Zbl 1188.37082
[8] Craciun, G.; Tang, Y.; Feinberg, M., Understanding bistability in complex enzyme-driven reaction networks, Proc. natl. acad. sci. USA, 103, 8697-86102, (2006) · Zbl 1254.93116
[9] Feinberg, M., 1979. Lectures on Chemical Reaction Networks, Lecture Notes, Mathematics Research Center, University of Wisconsin, \(1979. \langle\) www.che.eng.ohio-state.edu/∼feinberg/research/\( \rangle \).; Feinberg, M., 1979. Lectures on Chemical Reaction Networks, Lecture Notes, Mathematics Research Center, University of Wisconsin, \(1979. \langle\) www.che.eng.ohio-state.edu/∼feinberg/research/\( \rangle \).
[10] Ferrarese, A.; Marin, O.; Bustos, V.H.; Venerando, A.; Antonelli, M.; Allende, J.E.; Pinna, L.A., Chemical dissection of the APC repeat 3 multistep phosphorylation by the concerted action of protein kinases CK1 and GSK3, Biochemistry, 46, 11902-11910, (2007)
[11] Ferrell, J.E.; Bhatt, R.R., Mechanistic studies of the dual phosphorylation of mitogen-activated protein kinase, J. biol. chem., 272, 19008-19016, (1997)
[12] Fischer, E.H., Protein phosphorylation and cellular regulation, II, ()
[13] Gatermann, K.; Huber, B., A family of sparse polynomial systems arising in chemical reaction systems, J. symbolic comput., 33, 273-305, (2002) · Zbl 0994.92040
[14] Goldbeter, A.; Koshland, D.E., An amplified sensitivity arising from covalent modification in biological systems, Proc. natl. acad. sci. USA, 78, 11, 6840-6844, (1981)
[15] Gunawardena, J., 2003. Chemical Reaction Network Theory for in-silico biologists, Lecture Notes, Harvard University, \(2003. \langle\) vcp.med.harvard.edu/papers/crnt.pdf \(\rangle \).; Gunawardena, J., 2003. Chemical Reaction Network Theory for in-silico biologists, Lecture Notes, Harvard University, \(2003. \langle\) vcp.med.harvard.edu/papers/crnt.pdf \(\rangle \).
[16] Gunawardena, J., Multisite protein phosphorylation makes a good threshold but can be a poor switch, Proc. natl. acad. sci. USA, 102, 14617-14622, (2005)
[17] Gunawardena, J., Distributivity and processivity in multisite phosphorylation can be distinguished through steady-state invariants, Biophys. J., 93, 3828-3834, (2007)
[18] Gunawardena, J., Models in systems biology: the parameter problem and the meanings of robustness, ()
[19] Herstein, I., Topics in algebra, (1975), Wiley New York · Zbl 1230.00004
[20] Hunter, T., The age of crosstalk: phosphorylation, ubiquitination and beyond, Mol. cell, 28, 730-738, (2007)
[21] Jenuwein, T.; Allis, C.D., Translating the histone code, Science, 293, 1074-1080, (2001)
[22] Kim, S.Y.; Ferrell, J.E., Substrate competition as a source of ultrasensitivity in the inactivation of wee1, Cell, 128, 1133-1145, (2007)
[23] King, E.L.; Altman, C., A schematic method of deriving the rate laws for enzyme-catalyzed reactions, J. phys. chem., 60, 1375-1378, (1956)
[24] Krebs, E.G., Protein phosphorylation and cellular regulation, I, ()
[25] Kruse, J.-P.; Gu, W., Snapshot: p53 posttranslational modifications, Cell, 133, 930, (2008)
[26] Lisman, J.E., A mechanism for memory storage insensitive to molecular turnover: a bistable autophosphorylating kinase, Proc. natl. acad. sci. USA, 82, 3055-3057, (1985)
[27] Manrai, A.; Gunawardena, J., The geometry of multisite phosphorylation, Biophys. J., 95, 5533-5543, (2008)
[28] Markevich, N.I.; Hoek, J.B.; Kholodenko, B.N., Signalling switches and bistability arising from multisite phosphorylation in protein kinase cascades, J. cell biol., 164, 353-359, (2004)
[29] Moon, J.W., 1970. Counting labelled trees. In: Canadian Mathematical Monographs, vol. 1. Canadian Mathematical Congress.; Moon, J.W., 1970. Counting labelled trees. In: Canadian Mathematical Monographs, vol. 1. Canadian Mathematical Congress. · Zbl 0214.23204
[30] Nakajima, M.; Imai, K.; Ito, H.; Nishiwaki, T.; Murayama, Y.; Iwasaki, H.; Oyama, T.; Kondo, T., Reconstitution of Circadian oscillation of cyanobacterial kaic phosphorylation in vitro, Science, 308, 414-415, (2005)
[31] Park, K.-S.; Mohapatra, D.P.; Misonou, H.; Trimmer, J.S., Graded regulation of the kv2.1 potassium channel by variable phosphorylation, Science, 313, 976-979, (2006)
[32] Pesavento, J.J.; Bullock, C.R.; LeDuc, R.D.; Mizzen, C.A.; Kelleher, N.L., Combinatorial modification of human histone H4 quantitated by two-dimensional liquid chromatography coupled with top down mass spectrometry, J. biol. chem., 283, 14927-14937, (2008)
[33] Phanstiel, D.; Brumbaugh, J.; Berggren, W.T.; Conrad, K.; Feng, X.; Levenstein, M.E.; McAllister, G.C.; Thomson, J.A.; Coon, J.J., Mass spectrometry identifies and quantifies 74 unique histone H4 isoforms in differentiating human embryonic stem cells, Proc. natl. acad. sci. USA, 105, 4093-4098, (2008)
[34] Pufall, M.A.; Lee, G.M.; Nelson, M.L.; Kang, H.-S.; Velyvis, A.; Kay, L.E.; McIntosh, L.P.; Graves, B.J., Variable control of ets-1 DNA binding by multiple phosphates in an unstructured region, Science, 309, 142-145, (2005)
[35] Roach, P.J., Multisite and hierarchal protein phosphorylation, J. biol. chem., 266, 14139-14142, (1991)
[36] Rust, M.J.; Markson, J.S.; Lane, W.S.; Fisher, D.S.; O’Shea, E., Ordered phosphorylation governs oscillation of a three-protein Circadian clock, Science, 318, 809-812, (2007)
[37] Salazar, C.; Höfer, T., Versatile regulation of multisite protein phosphorylation by the order of phosphate processing and protein – protein interactions, Febs j., 274, 1046-1060, (2007)
[38] Shacter-Noiman, E.; Chock, P.B.; Stadtman, E.R., Protein phosphorylation as a regulatory device, Philos. trans. R. soc. London B, 302, 157-166, (1983)
[39] Soulé, C., Graphic requirements for multistationarity, Complexus, 1, 123-133, (2003)
[40] Strogatz, S.H., Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and engineering, (2001), Perseus Books
[41] Thomson, M., Gunawardena, J., 2009. Unlimited multistability in multisite phosphorylation systems. Nature 460, 274-277.; Thomson, M., Gunawardena, J., 2009. Unlimited multistability in multisite phosphorylation systems. Nature 460, 274-277.
[42] Turner, B., Cellular memory and the histone code, Cell, 111, 285-291, (2002)
[43] Tutte, W.T., The dissection of equilateral triangles into equilateral triangles, Proc. Cambridge philos. soc., 44, 463-482, (1948) · Zbl 0030.40903
[44] Walsh, C.T., 2006. Posttranslational Modification of Proteins. Roberts and Company, Englewood, Colorado.; Walsh, C.T., 2006. Posttranslational Modification of Proteins. Roberts and Company, Englewood, Colorado.
[45] Wu, R.C.; Qin, J.; Yi, P.; Wong, J.; Tsai, S.Y.; Tsai, M.J.; O’Malley, B.W., Selective phosphorylations of the SRC-3/AIB1 coactivator integrate genomic responses to multiple cellular signaling pathways, Mol. cell, 15, 937-949, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.