×

A simple fitness proxy for structured populations with continuous traits, with case studies on the evolution of haplo-diploids and genetic dimorphisms. (English) Zbl 1403.92182

Summary: For structured populations in equilibrium with everybody born equal, \(\ln(R_0)\) is a useful fitness proxy for evolutionarily steady strategy (ESS) and most adaptive dynamics calculations, with \(R_0\) the average lifetime number of offspring in the clonal and haploid cases, and half the average lifetime number of offspring fathered or mothered for Mendelian diploids. When individuals have variable birth states, as is, for example, the case in spatial models, \(R_0\) is itself an eigenvalue, which usually cannot be expressed explicitly in the trait vectors under consideration. In that case, \(Q(Y|X):=-\det(\mathrm{I}-\mathrm{L}(Y|X))\) can often be used as fitness proxy, with \(\mathbf L\) the next-generation matrix for a potential mutant characterized by the trait vector \(Y\) in the (constant) environment engendered by a resident characterized by \(X\). If the trait space is connected, global uninvadability can be determined from it. Moreover, it can be used in all the usual local calculations like the determination of evolutionarily singular trait vectors and their local invadability and attractivity. We conclude with three extended case studies demonstrating the usefulness of \(Q\): the calculation of ESSs under haplo-diploid genetics (I), of evolutionarily steady genetic dimorphisms (ESDs) with a priori proportionality of macro- and micro-gametic outputs (an assumption that is generally made but the fulfilment of which is a priori highly exceptional) (II), and of ESDs without such proportionality (III). These case studies should also have some interest in their own right for the spelled out calculation recipes and their underlying modelling methodology.

MSC:

92D15 Problems related to evolution
92D10 Genetics and epigenetics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bagheri-Chaichian, H. and Wagner, G. P.2004. Evolution of dominance in metabolic pathways. Genetics, 168: 1713-1735.
[2] Bagheri-Chaichian, H., Hermisson, J., Vaisnys, J. R. and Wagner, G. P.2003. Effects of epistasis on phenotypic robustness in metabolic pathways. Math. Biosci., 184: 27-51. · Zbl 1016.92005
[3] Bulmer, M.1994. Theoretical Evolutionary Ecology, Sunderland, MA: Sinauer Associates.
[4] Champagnat, N.2003. Convergence of adaptive dynamics n-morphic jump processes to the canonical equation and degenerate diffusion approximation, Prépublication de l’Université de Nanterre (Paris X) no. 03/7.
[5] Charlesworth, B.1994. Evolution in Age-Structured Populations, , 2nd ed. Cambridge University Press, Cambridge, UK · Zbl 0811.92016
[6] Courteau, J. and Lessard, S.2000. Optimal sex ratios in structured populations. J. Theor. Biol., 207: 159-175.
[7] De Kovel, C. G.F. and Metz, J. A.J.The evolution of a genetic polymorphism when male and female interests conflict, in preparation
[8] Dieckmann, U. and Law, R.1996. The dynamical theory of coevolution: A derivation from stochastic ecological processes. J. Math. Biol., 34: 579-612. · Zbl 0845.92013
[9] Dieckmann, U. and Metz, J. A.J.2006. Surprising evolutionary predictions from enhanced ecological realism. Theor. Popul. Biol., 69: 263-281. · Zbl 1117.92044
[10] Diekmann, O., Heesterbeek, J. A.P. and Metz, J. A.J.1990. On the definition and the computation of the basic reproduction ratio R_{0} in models for infectious diseases in heterogeneous populations. J. Math. Biol., 28: 365-382. · Zbl 0726.92018
[11] Diekmann, O., Gyllenberg, M., Huang, H., Kirkilionis, M., Metz, J. A.J. and Thieme, H. R.2001. On the formulation and analysis of general deterministic structured population models. II. Nonlinear theory. J. Math. Biol., 43: 157-189. · Zbl 1028.92019
[12] Diekmann, O., Gyllenberg, M. and Metz, J. A.J.2003. Steady state analysis of structured population models. Theor. Popul. Biol., 63: 309-338. · Zbl 1098.92062
[13] Durinx, M., Metz, J. A.J. and Meszéna, G.2008. Adaptive dynamics for physiologically structured models. J. Math. Biol., 56: 673-742. · Zbl 1146.92027
[14] Eshel, I.1983. Evolutionary and continuous stability. J. Theor. Biol., 103: 99-111.
[15] Eshel, I.1991. “Game theory and population dynamics in complex genetical systems: The role of sex in short term and in long term evolution”. In Game Equilibrium Models I. Evolution and Game Dynamics, Edited by: Selten, R.6-26. Berlin: Springer. · Zbl 0733.92012
[16] Ferrière, R. and Gatto, M.1995. Lyapunov exponents and the mathematics of invasion in oscillatory or chaotic populations. Theor. Popul. Biol., 48: 126-171. · Zbl 0863.92015
[17] Geritz, S. A.H., Kisdi, É., Meszéna, G. and Metz, J. A.J.1998. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol., 12: 35-57.
[18] Hansen, T. F. and Wagner, G. P.2003. Modeling genetic architecture: A multilinear theory of gene interaction. Theor. Popul. Biol., 59: 61-86. · Zbl 0994.92029
[19] Hansen, T. F., Álvarez-Castro, J. M., Carter, A. J.R., Hermisson, J. and Wagner, G. P.2006. Evolution of genetic architecture under directional selection. Evolution, 60: 1523-1536.
[20] Heesterbeek, J. A.P. and Roberts, M. G.2007. The type-reproduction number T in models for infectious disease control. Math. Biosci., 206: 3-10. · Zbl 1124.92043
[21] Hermisson, J., Hansen, T. F. and Wagner, G. P.2003. Epistasis in polygenic traits and the evolution of genetic architecture under stabilizing selection. Am. Nat., 161: 708-734.
[22] Hofbauer, J. and Sigmund, K.1998. Evolutionary Games and Population Dynamics, Cambridge, , UK: Cambridge University Press. · Zbl 0914.90287
[23] Intriligator, M. D.1971. Mathematical Optimization and Economic Theory, Englewood Cliffs, NJ: Prentice Hall. · Zbl 1140.90302
[24] Kisdi, E. and Geritz, S. A.H.1999. Adaptive dynamics in allele space: Evolution of genetic polymorphism by small mutations in a heterogeneous environment. Evolution, 53: 993-1008.
[25] Leimar, O.2001. Evolutionary change and Darwinian demons. Selection, 2: 65-72.
[26] Leimar, O.2005. The evolution of phenotypic polymorphism: Randomized strategies versus evolutionary branching. Am. Nat., 165: 669-681.
[27] Leimar, O.in press. “Multidimensional convergence stability and the canonical adaptive dynamics”. In Elements of Adaptive Dynamics. Cambridge Studies in Adaptive Dynamics, Edited by: Dieckmann, U. and Metz, J. A.J.Cambridge, , UK: Cambridge University Press.
[28] Metz, J. A.J.2008. Fitness. Evolutionary Ecology. Encyclopedia of Ecology, 2: 1599-1612. Elsevier, Oxford
[29] Metz, J. A.J.in press. “Invasion fitness, canonical equations, and global invasibility criteria for Mendelian populations”. In Elements of Adaptive Dynamics. Cambridge Studies in Adaptive Dynamics, Edited by: Dieckmann, U. and Metz, J. A.J.Cambridge, , UK: Cambridge University Press.
[30] Metz, J. A.J. and Diekmann, O.1986. The dynamics of physiologically structured populations, Vol. 68., Berlin: Lecture Notes in Biomathematics. Springer Verlag · Zbl 0614.92014
[31] Metz, J. A.J. and De Kovel, C. G.F.The canonical equation of adaptive dynamics for Mendelian diploids and haplo-diploids, in preparation.
[32] Metz, J. A.J., Nisbet, R. M. and Geritz, S. A.H.1992. How should we define ‘fitness’ for general ecological scenarios?. Trends Ecol. Evol., 7: 198-202.
[33] Metz, J. A.J., Geritz, S. A.H., Meszéna, G., Jacobs, F. J.A. and van Heerwaarden, J. S.1996. “Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction”. In Stochastic and Spatial Structures of Dynamical Systems, Edited by: Van Strien, S. J. and Verduyn Lunel, S. M.183-231. Amsterdam: North-Holland. · Zbl 0972.92024
[34] Peischl, S. and Bürger, R.2008. Evolution of dominance under frequency-dependent intraspecific competition. J. Theor. Biol., 251: 210-226. · Zbl 1398.92181
[35] Proulx, S. R. and Phillips, P. C.2006. Allelic divergence precedes and promotes gene duplication. Evolution, 60: 881-892.
[36] Rand, D. A., Wilson, H. B. and McGlade, J. M.Dynamics and evolution: evolutionary stable attractors, invasion exponents and phenotypic dynamics. Phil. Trans. R. Soc. Lond. B, 1994261-283.
[37] Rice, S. H.1998. The evolution of canalization and the breaking of von Baer’s laws: Modeling the evolution of development with epistasis. Evolution, 52: 647-657.
[38] Rice, S. H.2000. “The evolution of developmental interactions: Epistasis, canalization, and integration”. In Epistasis and the Evolutionary Process, Edited by: Wolf, J. B., Brodie III, E. D. and Wade, M. J.82-98. New York: Oxford University Press.
[39] Rice, S. H.2002. A general population genetic theory for the evolution of developmental interactions. Proc. Natl Acad. Sci., 99: 15518-15523.
[40] Rice, S. H.2004. Developmental associations between traits: Covariance and beyond. Genetics, 166: 513-526.
[41] Rice, S. H.2004. Evolutionary Theory: Mathematical and Conceptual Foundations, Sunderland, MA: Sinauer Associates.
[42] Rice, S. H.2008. Theoretical approaches to the evolution of development and genetic architecture. Ann. NY Acad. Sci., 1133: 67-86.
[43] Roberts, M. G. and Heesterbeek, J. A.P.2003. A new method for estimating the effort required to control an infectious disease. Proc. R. Soc. Lond. B, 270: 1359-1364.
[44] Taylor, P. D.1989. Evolutionary stability in one-parameter models under weak selection. Theor. Popul. Biol., 36: 125-143. · Zbl 0684.92014
[45] Taylor, P. D. and Bulmer, M. G.1980. Local mate competition and the sex ratio. J. Theor. Biol., 86: 409-419.
[46] Thieme, H. R.2009. Spectral bound and reproduction number for infinite dimensional population structure and time heterogeneity. SIAM J. Appl. Math., 70: 188-211. · Zbl 1191.47089
[47] Van Dooren, T. J.M.1999. The evolutionary ecology of dominance-recessivity. J. Theor. Biol., 198: 519-532.
[48] Van Dooren, T. J.M.2000. The evolutionary dynamics of direct phenotypic overdominance: Emergence possible, loss probable. Evolution, 54: 1899-1914.
[49] Van Dooren, T. J.M.2006. Protected polymorphism and evolutionary stability in pleiotropic models with trait specific dominance. Evolution, 60: 1991-2003.
[50] Van Doorn, S. and Dieckmann, U.2006. The long-term evolution of multi-locus traits under frequency-dependent disruptive selection. Evolution, 60: 2226-2238.
[51] Wagner, G. P. and Mezey, J.2000. Modeling the evolution of genetic architecture: A continuum of alleles model with pairwise A×A epistasis. J. Theor. Biol., 203: 163-175.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.