×

Energy stable discontinuous Galerkin finite element method for the Allen-Cahn equation. (English) Zbl 1404.65173

Summary: In this paper, we investigate numerical solution of Allen-Cahn equation with constant and degenerate mobility, and with polynomial and logarithmic energy functionals. We discretize the model equation by symmetric interior penalty Galerkin (SIPG) method in space, and by average vector field (AVF) method in time. We show that the energy stable AVF method as the time integrator for gradient systems like the Allen-Cahn equation satisfies the energy decreasing property for fully discrete scheme. Numerical results reveal that the discrete energy decreases monotonically, the phase separation and metastability phenomena can be observed, and the ripening time is detected correctly.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs

Software:

RODAS
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Allen, M. S. and Cahn, J. W. [1979] “ A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening,” Acta. Mater.27(6), 1085-1095.
[2] Arnold, D. N., Brezzi, F., Cockborn, B. and Marini, L. [2002] “ Unified analysis of discontinuous Galerkin methods for elliptic problems,” SIAM J. Numer. Anal.39, 1749-1779. · Zbl 1008.65080
[3] Barrett, J. W. and Blowey, J. F. [1999] “ Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility,” Math. Comput.68(226), 487-517. · Zbl 1126.65321
[4] Barrett, J. W., Blowey, J. F. and Garcke, H. [2000] “ Finite element approximation of the Cahn-Hilliard equation with degenerate mobility,” SIAM J. Numer. Anal.37(1), 286-318. · Zbl 0947.65109
[5] Beneš, M., Chalupecky, V. and Mikula, K. [2004] “ Geometrical image segmentation by the Allen-Cahn equation,” Appl. Numer. Math.51(2-3), 187-205. · Zbl 1055.94502
[6] Celledoni, E., Grimm, V., McLachlan, R. I., McLaren, D. I., ONeale, D., Owren, B. and Quispel, G. R. W. [2012] “ Preserving energy resp. dissipation in numerical PDEs using the average vector field method,” J. Comput. Phys.231(20), 6770-6789. · Zbl 1284.65184
[7] Chen, L. Q. [2002] “ Phase-field models for microstructure evolution,” Annu. Rev. Mater. Res.32(1), 113-140.
[8] Chen, X. F., Elliott, C. M., Gardiner, A. and Zhao, J. J. [1998] “ Convergence of numerical solutions to the Allen-Cahn equation,” Appl. Anal.69, 47-56. · Zbl 0992.65096
[9] Choi, J. W., Lee, H. G., Jeong, D. and Kim, J. [2009] “ An unconditionally gradient stable numerical method for solving the Allen-Cahn equation,” Physica A388(9), 1791-1803.
[10] Christlieb, A., Jones, J., Wetton, B., Promislow, K. and Willoughby, M. [2014] “ High accuracy solutions to energy gradient flows from material science models,” J. Comput. Phys.257, 193-215. · Zbl 1349.65510
[11] Deuflhard, P. and Weisser, M. [2012] Adaptive Numerical Solutions of Partial Differential Equations (de Gruyter, Berlin).
[12] Du, Q. and Zhu, W. [2005] “ Analysis and applications of the exponential time differencing schemes and their contour integration modifications,” BIT Numer. Math.45, 307-328. · Zbl 1080.65074
[13] Elliott, C. M. and Stuart, A. M. [1993] “ The global dynamics of discrete semilinear parabolic equations,” SIAM J. Numer. Anal.30, 1622-1663. · Zbl 0792.65066
[14] Eyre, D. J. [1998] “An unconditionally stable one-step scheme for gradient systems,” unpublished, www.math.utah.edu/eyre/research/methods/stable.ps.
[15] Feng, X. and Prohl, A. [2003] “ Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows,” Numer. Math.94(1), 33-65. · Zbl 1029.65093
[16] Feng, X. and Li, Y. [2015] “ Analysis of symmetric interior penalty discontinuous Galerkin methods for the Allen-Cahn equation and the mean curvature flow,” IMA J. Numer. Anal.35(4), 1622-1651. · Zbl 1328.65205
[17] Feng, X., Song, H., Tang, T. and Yang, J. [2013a] “ Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation,” Inverse Probl. Imag.7(3), 679-695. · Zbl 1273.65111
[18] Feng, X., Tang, T. and Yang, J. [2013b] “ Stabilized Crank-Nicolson/Adams-Bashforth schemes for phase field models,” East Asian J. Appl. Math.3, 59-80. · Zbl 1302.65224
[19] Feng, X., Tang, T. and Yang, J. [2015] “ Long time numerical simulations for phase-field problems using \(<mml:math display=''inline`` overflow=''scroll``>\)-adaptive spectral deferred correction methods,” SIAM J. Sci. Comput.37(1), A271-A294. · Zbl 1327.65161
[20] Guan, Z., Lowengrub, J. S., Wang, C. and Wise, S. M. [2014] “ Second order convex splitting schemes for periodic nonlocal Cahn-Hilliard and Allen-Cahn equation,” J. Comput. Phys.277, 48-71. · Zbl 1349.65298
[21] Guillén-Gonzélez, F. and Tierra, G. [2014] “ Second order schemes and time-step adaptivity for Allen-Cahn and Cahn-Hilliard models,” Comput. Math. Appl.68, 821-846. · Zbl 1362.65104
[22] Guo, R., Ji, L. and Xu, Y. [2016] “ High order local discontinuous Galerkin methods for the Allen-Cahn equation: Analysis and simulation,” J. Comput. Math.34(2), 135-158. · Zbl 1363.65162
[23] Guo, R. and Xu, Y. [2014] “ Efficient solvers of discontinuous Galerkin discretization for the Cahn-Hilliard equations” J. Sci. Comput.58(2), 380-408. · Zbl 1296.65134
[24] Hairer, E. [2010] “ Energy-preserving variant of collocation methods,” J. Numer. Anal. Industr. Appl. Math.5(1-2), 73-84. · Zbl 1432.65185
[25] Hairer, E. and Wanner, G. [2010] Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems. Second revised edition, paperback. , 14. Springer-Verlag, Berlin, 2010. · Zbl 1192.65097
[26] Kang, K. and Lowengrub, J. [2004] “ Conservative multigrid methods for Cahn-Hilliard fluids,” J. Comput. Phys.193, 511-543. · Zbl 1109.76348
[27] Kassam, A. and Trefethen, L. N. [2005] “ Fourth-order time-stepping for stiff PDEs,” SIAM J. Sci. Comput.26, 1214-1233. · Zbl 1077.65105
[28] Katsoulakis, M., Kossioris, G. T. and Reitich, F. [1995] “ Generalized motion by mean curvature with Neumann conditions and the Allen-Cahn model for phase transitions,” J. Geom. Anal.5, 255-279. · Zbl 0827.35003
[29] Lee, H. G. and Lee, J. Y. [2014] “ A semi-analytical Fourier spectral method for the Allen-Cahn equation,” Comput. Math. Appl.68, 174-184. · Zbl 1369.65128
[30] Li, Y., Lee, H. G., Jeong, D. and Kim, J. [2010] “ An unconditionally stable hybrid numerical method for solving the Allen-Cahn equation,” Comput. Math. Appl.60, 1591-1606. · Zbl 1202.65112
[31] Liu, F. and Shen, J. [2015] “ Stabilized semi-implicit spectral deferred correction methods for Allen-Cahn and Cahn-Hilliard equations,” Math. Methods Appl. Sci.38(13), 4564-4575. · Zbl 1335.65078
[32] Quispel, G. R. W. and McLaren, D. I. [2008] “ A new class of energy-preserving numerical integration methods,” J. Phys. A, Math. Theor.41(4), 045206. · Zbl 1132.65065
[33] Rivière, B. [2008] Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. Theory and Implementation. , 35. Society for Industrial and Applied Mathematics (SIAM). · Zbl 1153.65112
[34] Schieweck, F. [2010] “ A stable discontinuous Galerkin-Petrov time discretization of higher order,” J. Numer. Math.18, 25-57. · Zbl 1198.65093
[35] Shen, J., Tang, T. and Yang, J. [2016] “ On the maximum principle preserving schemes for the generalized Allen-Cahn equation,” Commun. Math. Sci.14(6), 1517-1534. · Zbl 1361.65059
[36] Shen, J., Wang, C., Wang, X. and Wise, S. M. [2012] “ Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: Application to thin film epitaxy,” SIAM J. Numer. Anal.50(1), 105-125. · Zbl 1247.65088
[37] Shen, J. and Yang, X. [2010] “ Numerical approximations of Allen-Cahn and Cahn-Hilliard equations,” Discret. Contin. Dyn. Syst. A28, 1669-1691. · Zbl 1201.65184
[38] Vemaganti, K. [2007] “ Discontinuous Galerkin methods for periodic boundary value problems,” Numer. Methods Partial Differ. Equ.23(3), 587-596. · Zbl 1114.65144
[39] Willoughby, M. R. [2011] High-Order Timeadaptive Numerical Methods for the Allen-Cahn and Cahn-Hilliard Equations, Masters Thesis, University of British Columbia, Vancouver.
[40] Yang, X. [2016] “ Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends,” J. Comput. Phys.327, 294-316. · Zbl 1373.82106
[41] Yang, X., Feng, J. J., Chun, L. and Shen, J. [2006] “ Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method,” J. Comput. Phys.218(1), 417-428. · Zbl 1158.76319
[42] Zhang, J. and Du, Q. [2016] “ Numerical studies of discrete approximations to the Allen-Cahn equation in the sharp interface limit,” SIAM J. Sci. Comput.31, 3042-3063. · Zbl 1198.82045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.