×

Low-order preconditioning of high-order triangular finite elements. (English) Zbl 1404.65255

Summary: We propose a new formulation of a low-order elliptic preconditioner for high-order triangular elements. In the preconditioner, the nodes of the low-order finite element problem do not necessarily coincide with the high-order nodes. Instead, the two spaces are connected using least squares projection operators. The effectiveness of the preconditioner is demonstrated to be highly sensitive to the location and number of vertices used to construct the low-order finite element mesh on each high-order element. We treat the number of low-order vertices and their locations as optimizable quantities and chose them to minimize the condition number of the preconditioned stiffness matrix on the reference element. We present computational results that demonstrate that the condition number of the preconditioned high-order stiffness matrix on the reference element can be improved. The best performing preconditioners are formed with low-order finite element meshes that have more vertices than the high-order element has degrees of freedom, and have nodes grouped close to the element edges.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65F08 Preconditioners for iterative methods
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] L. Bos, J.-P. Calvi, N. Levenberg, A. Sommariva, and M. Vianello, Geometric weakly admissible meshes, discrete least squares approximations and approximate Fekete points, Math. Comp., 80 (2011), pp. 1623–1638. · Zbl 1228.41002
[2] C. Canuto, P. Gervasio, and A. Quarteroni, Finite-element preconditioning of G-NI spectral methods, SIAM J. Sci. Comput., 31 (2010), pp. 4422–4451. · Zbl 1223.65089
[3] C. Canuto, M. Y. Hussaini, A. Quarteroni, A. Thomas, Jr., et al., Spectral methods in fluid dynamics, Springer, New York, 2012. · Zbl 0658.76001
[4] P. Demaret and M. Deville, Chebyshev collocation solutions of the Navier–Stokes equations using multi-domain decomposition and finite element preconditioning, J. Comput. Phys., 95 (1991), pp. 359–386. · Zbl 0726.76066
[5] M. O. Deville, P. F. Fischer, and E. H. Mund, High-Order Methods for Incompressible Fluid Flow, Vol. 9, Cambridge University Press, Cambridge, 2002. · Zbl 1007.76001
[6] M. O. Deville and E. H. Mund, Chebyshev pseudospectral solution of second-order elliptic equations with finite element preconditioning, J. Comput. Phys., 60 (1985), pp. 517–533. · Zbl 0585.65073
[7] M. O. Deville and E. H. Mund, Finite-element preconditioning for pseudospectral solutions of elliptic problems, SIAM J. Sci. and Stat. Comput., 11 (1990), pp. 311–342. · Zbl 0701.65075
[8] M. O. Deville and E. H. Mund, Fourier analysis of finite element preconditioned collocation schemes, SIAM J. Sci. and Stat. Comput., 13 (1992), pp. 596–610. · Zbl 0745.65060
[9] P. F. Fischer, An overlapping Schwarz method for spectral element solution of the incompressible Navier–Stokes equations, J. Comput. Phys., 133 (1997), pp. 84–101. · Zbl 0904.76057
[10] P. F. Fischer, N. I. Miller, and H. M. Tufo, An overlapping Schwarz method for spectral element simulation of three-dimensional incompressible flows, IMA Vol. Math. Appl., 120 (2000), pp. 159–180. · Zbl 0991.76059
[11] P. F. Fischer and E. M. Rønquist, Spectral element methods for large scale parallel Navier–Stokes calculations, Comput. Methods Appl. Mech. Engrg., 116 (1994), pp. 69–76. · Zbl 0826.76060
[12] P. Francken, M. Deville, and E. Mund, On the spectrum of the iteration operator associated to the finite element preconditioning of Chebyshev collocation calculations, Comput. Methods Appl. Mech. Engrg., 80 (1990), pp. 295–304. · Zbl 0727.65089
[13] R. D. Henderson and G. E. Karniadakis, Unstructured spectral element methods for simulation of turbulent flows, J. Comput. Phys., 122 (1995), pp. 191–217. · Zbl 0840.76070
[14] J. S. Hesthaven, From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex, SIAM J. Numer. Anal., 35 (1998), pp. 655–676. · Zbl 0933.41004
[15] J. W. Lottes and P. F. Fischer, Hybrid multigrid/Schwarz algorithms for the spectral element method, J. Sci. Comput., 24 (2005), pp. 45–78. · Zbl 1078.65570
[16] W. A. Mulder, New triangular mass-lumped finite elements of degree six for wave propagation, Prog. Electromagn. Res., 141 (2013), pp. 671–692.
[17] L. Olson, Algebraic multigrid preconditioning of high-order spectral elements for elliptic problems on a simplicial mesh, SIAM J. Sci. Comput., 29 (2007), pp. 2189–2209. · Zbl 1149.65094
[18] S. A. Orszag, Spectral methods for problems in complex geometries, J. Comput. Phys., 37 (1980), pp. 70–92. · Zbl 0476.65078
[19] J. Proriol, Sur une famille de polynomes á deux variables orthogonaux dans un triangle, C. R. Hebdomadaires des Seances de L’Acedmie des Sciences, 245 (1957), pp. 2459–2461. · Zbl 0080.05204
[20] A. Quarteroni and E. Zampieri, Finite element preconditioning for Legendre spectral collocation approximations to elliptic equations and systems, SIAM J. Numer. Anal., 29 (1992), pp. 917–936. · Zbl 0753.65087
[21] M. A. Taylor, B. A. Wingate, and R. E. Vincent, An algorithm for computing Fekete points in the triangle, SIAM J. Numer. Anal., 38 (2000), pp. 1707–1720. · Zbl 0986.65017
[22] T. Warburton, An explicit construction of interpolation nodes on the simplex, J. Engrg. Math., 56 (2006), pp. 247–262. · Zbl 1110.65014
[23] T. Warburton, L. F. Pavarino, and J. S. Hesthaven, A pseudo-spectral scheme for the incompressible Navier–Stokes equations using unstructured nodal elements, J. Comput. Phys., 164 (2000), pp. 1–21. · Zbl 0961.76063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.