Effective equations governing an active poroelastic medium. (English) Zbl 1404.74040

Summary: In this work, we consider the spatial homogenization of a coupled transport and fluid-structure interaction model, to the end of deriving a system of effective equations describing the flow, elastic deformation and transport in an active poroelastic medium. The ‘active’ nature of the material results from a morphoelastic response to a chemical stimulant, in which the growth time scale is strongly separated from other elastic time scales. The resulting effective model is broadly relevant to the study of biological tissue growth, geophysical flows (e.g. swelling in coals and clays) and a wide range of industrial applications (e.g. absorbant hygiene products). The key contribution of this work is the derivation of a system of homogenized partial differential equations describing macroscale growth, coupled to transport of solute, that explicitly incorporates details of the structure and dynamics of the microscopic system, and, moreover, admits finite growth and deformation at the pore scale. The resulting macroscale model comprises a Biot-type system, augmented with additional terms pertaining to growth, coupled to an advection-reaction-diffusion equation. The resultant system of effective equations is then compared with other recent models under a selection of appropriate simplifying asymptotic limits.


74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74L15 Biomechanical solid mechanics
92C10 Biomechanics
76V05 Reaction effects in flows
35Q35 PDEs in connection with fluid mechanics
35Q74 PDEs in connection with mechanics of deformable solids
Full Text: DOI


[1] Bottaro A, Ansaldi T. (2012) On the infusion of a therapeutic agent into a solid tumour modeled as a poroelastic medium. J. Biomed. Eng. 134, 1-6.
[2] Roose T, Chapman SJ, Maini PK. (2007) Mathematical models of avascular tumor growth. SIAM Rev. 49, 179-208. (doi:10.1137/S0036144504446291) · Zbl 1117.93011
[3] Cowin SC. (1999) Bone poroelasticity. J. Biomech. 32, 217-238. (doi:10.1016/S0021-9290(98)00161-4)
[4] Mikelić A, Wheeler MF. (2012) On the interface law between a deformable porous medium containing a viscous fluid and an elastic body. Math. Models Methods Appl. Sci. 22, 1250031. (doi:10.1142/s0218202512500315) · Zbl 1257.35030
[5] Wang HF. (2000)Theory of linear poroelasticity with applications to geomechanics and hydrogeology. Princeton Series in Geophysics. Princeton, NJ: Princeton University Press.
[6] Biot MA. (1941) General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155-165. (doi:10.1063/1.1712886) · JFM 67.0837.01
[7] Biot MA. (1955) Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182-185. (doi:10.1063/1.1721956) · Zbl 0067.23603
[8] Biot MA. (1956) General solutions of the equations of elasticity and consolidation for a porous material. J. Appl. Mech. Trans. ASME 78, 91-96. · Zbl 0074.19101
[9] Biot MA. (1956) Theory of propagation of elastic waves in a fluid saturated porous solid, parts I and II. J. Acoust. Soc. Am. 28, 168-191. (doi:10.1121/1.1908239)
[10] Berryman JG, Berge PA. (1996) Critique of two explicit schemes for estimating elastic properties of multiphase composites. Mech. Mater. 22, 149-164. (doi:10.1016/0167-6636(95)00035-6)
[11] Milton GW. (2002) The theory of composites. Cambridge, UK: Cambridge University Press.
[12] Bedford A, Drumheller DS. (1979) A variational theory of porous media. Int. J. Solids Struct. 15, 967-980. (doi:10.1016/0020-7683(79)90025-8) · Zbl 0411.73088
[13] Drumheller DS, Bedford A. (1980) A thermomechanical theory for reacting immiscible mixtures. Arch. Rational Mech. Anal. 73, 257-284. (doi:10.1007/BF00282206) · Zbl 0446.73100
[14] Bedford A, Drumheller DS. (1983) Theories of immiscible and structured mixtures. Int. J. Eng. Sci. 21, 863-960. (doi:10.1016/0020-7225(83)90071-X) · Zbl 0534.76105
[15] Wood BD, Cherblanc F, Quintard M, Whitaker S. (2003) Volume averaging for determining the effective dispersion tensor: closure using periodic unit cells and comparison with ensemble averaging. Water Resour. Res. 39, 1210. (doi:10.1029/2002WR001723)
[16] Whitaker S. (2013)The method of volume averaging. Theory and Applications of Transport in Porous Media. Amsterdam, The Netherlands: Springer.
[17] Berryman JG. (2005) Comparison of upscaling methods in poroelasticity and its generalizations. J. Eng. Mech. 131, 928-936. (doi:10.1061/(ASCE)0733-9399(2005)131:9(928))
[18] Davit Yet al.(2013) Homogenization via formal multiscale asymptotics and volume averaging: how do the two techniques compare? Adv. Water Resour. 62, 178-206. (doi:10.1016/j.advwatres.2013.09.006)
[19] Farmer C. (2002) Upscaling: a review. Int. J. Num. Meth. Fluids 40, 63-78. (doi:10.1002/fld.267) · Zbl 1058.76574
[20] Frippiat CC, Holeyman AE. (2008) A comparative review of upscaling methods for solute transport in heterogeneous porous media. J. Hydrol. 362, 150-176. (doi:10.1016/j.jhydrol.2008.08.015)
[21] Murad MA, Cushman JH. (1996) Multiscale flow and deformation in hydrophilic swelling porous media. Int. J. Eng. Sci. 34, 313-338. (doi:10.1016/0020-7225(95)00057-7) · Zbl 0900.76622
[22] Moyne C, Murad MA. (2002) Electro-chemo-mechanical couplings in swelling clays derived from a micro/macro-homogenization procedure. Int. J. Solids Struct. 39, 6159-6190. (doi:10.1016/S0020-7683(02)00461-4) · Zbl 1032.74587
[23] DeVane RH, Wagner MS, Murch BP. (2016)The Procter and Gamble company: current state and future needs in materials modeling. In Materials research for manufacturing, pp. 303-328. Berlin, Germany: Springer.
[24] Sanchez-Palencia E. (1980)Non-homogeneous media and vibration theory. Lecture Notes in Physics, vol. 127. Berlin, Germany: Springer. · Zbl 0432.70002
[25] Allaire G. (1992) Homogenization and two-scale convergence. SIAM J. Math. Anal. 23, 1482-1518. (doi:10.1137/0523084) · Zbl 0770.35005
[26] Tartar L. (1980)Appendix: Incompressible fluid flow in a porous medium—convergence of the homogenization process. In Non-homogeneous media and vibration theory (ed. E Sanchez-Palencia). Lecture Notes in Physics, vol. 127. Berlin, Germany: Springer.
[27] Efendiev Y, Hou TY. (2009) Multiscale finite element methods: theory and applications. New York, NY: Springer. · Zbl 1163.65080
[28] Brown DL, Taralova V. (2016) A multiscale finite element method for Neumann problems in porous microstructures. Discrete Contin. Dyn. Syst. Ser. S 9, 1299-1326. (doi:10.3934/dcdss.2016052) · Zbl 1388.76155
[29] Band LR, King JR. (2012) Multiscale modelling of auxin transport in the plant-root elongation zone. J. Math. Biol. 65, 743-785. (doi:10.1007/s00285-011-0472-y) · Zbl 1303.92061
[30] Fozard JA, Byrne HM, Jensen OE, King JR. (2010) Continuum approximations of individual-based models for epithelial monolayers. Math. Med. Biol. 5, 39-74. (doi:10.1093/imammb/dqp015) · Zbl 1184.92011
[31] O’Dea RD, King JR. (2011) Multiscale analysis of pattern formation via intercellular signalling. Math. Biosci. 231, 172-185. (doi:10.1016/j.mbs.2011.03.003) · Zbl 1214.92006
[32] Ptashnyk M, Chavarría-Krauser A. (2010) Homogenization of long-range auxin transport in plant tissues. Nonlinear Anal. Real World Appl. 11, 4524-4532. (doi:10.1016/j.nonrwa.2008.10.063) · Zbl 1202.35176
[33] Ptashnyk M, Roose T. (2010) Derivation of a macroscopic model for transport of strongly sorbed solutes in the soil using homogenization theory. SIAM J. Appl. Math. 70, 2097-2118. (doi:10.1137/080729591) · Zbl 1230.35014
[34] Turner S, Sherratt JA, Painter KL, Savill NJ. (2004) From a discrete to a continuous model of biological cell movement. Phy. Rev. E 69, 21910. (doi:10.1103/PhysRevE.69.021910)
[35] Burridge R, Keller JB. (1981) Poroelasticity equations derived from microstructure. J. Acoust. Soc. Am. 70, 1140. (doi:10.1121/1.386945) · Zbl 0519.73038
[36] Penta R, Ambrosi D, Shipley RJ. (2014) Effective governing equations for poroelastic growing media. Q. J. Mech. Appl. Math. 67, 69-91. (doi:10.1093/qjmam/hbt024) · Zbl 1346.74159
[37] Brown DL, Popov P, Efendiev Y. (2014) Effective equations for fluid-structure interaction with applications to poroelasticity. Appl. Anal. 93, 771-790. (doi:10.1080/00036811.2013.839780) · Zbl 1291.74152
[38] O’Dea RD, Nelson MR, ElHaj AJ, Waters SL, Byrne HM. (2014) A multiscale analysis of nutrient transport and biological tissue growth in vitro. Math. Med. Biol. 32, 345-366. (doi:10.1093/imammb/dqu015) · Zbl 1325.92061
[39] Collis J, Hubbard ME, O’Dea RD. (2016) A multi-scale analysis of drug transport and response for a multi-phase tumour model. Eur. J. Appl. Math.1-36. (doi:10.1017/S0956792516000413) · Zbl 1375.92030
[40] Collis J, Hubbard ME, O’Dea RD. (2016) Computational modelling of multiscale, multiphase fluid mixtures with application to tumour growth. Comp. Methods Appl. Mech. Eng. 309, 554-578. (doi:10.1016/j.cma.2016.06.015)
[41] Peter MA. (2007) Homogenisation in domains with evolving microstructure. Comp. Rendus Mécanique 335, 357-362. (doi:10.1016/j.crme.2007.05.024) · Zbl 1132.74036
[42] Peter MA. (2009) Coupled reaction-diffusion processes inducing an evolution of the microstructure: analysis and homogenization. Nonlinear Anal. Theory Methods Appl. 70, 806-821. (doi:10.1016/j.na.2008.01.011) · Zbl 1151.35308
[43] Richardson G, Chapman SJ. (2011) Derivation of the bidomain equations for a beating heart with a general microstructure. SIAM J. Appl. Math. 71, 657-675. (doi:10.1137/090777165) · Zbl 1243.35015
[44] Cowin SC. (2004) Tissue growth and remodelling. Annu. Rev. Biomed. Eng. 6, 77-107. (doi:10.1146/annurev.bioeng.6.040803.140250)
[45] Taber LA. (1995) Biomechanics of growth, remodeling, and morphogenesis. Appl. Mech. Rev. 48, 487-545. (doi:10.1115/1.3005109)
[46] Hsu F. (1968) The influences of mechanical loads on the form of a growing elastic body. J. Biomech. 1, 303-311. (doi:10.1016/0021-9290(68)90024-9)
[47] Skalak R. (1981)Growth as a finite displacement field. In Proc. of the IUTAM Symposium on Finite Elasticity (eds DE Carlson, RT Shield), pp. 347-355. The Hague, The Netherlands: Martinus Nijhoff Publishers.
[48] Skalak R, Dasgupta G, Moss M, Otten E, Dullemeijer P, Vilmann H. (1982) Analytical description of growth. J. Theor. Biol. 94, 555-577. (doi:10.1016/0022-5193(82)90301-0)
[49] Rodriguez EK, Hoger A, McCulloch AD. (1994) Stress-dependent finite-growth in soft elastic tissues. J. Biomech. 27, 455-467. (doi:10.1016/0021-9290(94)90021-3)
[50] Norris AN. (1998) The energy of a growing elastic surface. Int. J. Solids Struct. 35, 5237-5352. (doi:10.1016/S0020-7683(97)00268-0) · Zbl 0934.74015
[51] Gleason RL, Humphrey JD. (2004) A mixture model of arterial growth and remodelling in hypertension: altered muscle tone and tissue turnover. J. Vascular Res. 41, 352-353. (doi:10.1159/000080699)
[52] Rubinstein J. (1987)Hydrodynamic screening in random media. In Hydrodynamic behaviour and interacting particle systems, vol. 9 (ed. G Papanicolao). IMA Volumes in Mathematics and its Application. Berlin, Germany: Springer. · Zbl 0643.76102
[53] Mei CC, Auriault J-L. (1991) The effect of weak inertia on flow through a porous medium. J. Fluid Mech. 222, 647-663. (doi:10.1017/S0022112091001258) · Zbl 0718.76099
[54] Goriely A, Ben Amar M. (2007) On the definition and modeling of incremental, cumulative, and continuous growth laws in morphoelasticity. Biomech. Model. Mechanobiol. 6, 289-296. (doi:10.1007/s10237-006-0065-7)
[55] Menzel A, Kuhl E. (2012) Frontiers in growth and remodeling. Mech. Res. Commun. 42, 1-14. (doi:10.1016/j.mechrescom.2012.02.007)
[56] Ambrosi Det al.(2011) Perspectives on biological growth and remodeling. J. Mech. Phys. Solids 59, 863-883. (doi:10.1016/j.jmps.2010.12.011) · Zbl 1270.74134
[57] Göktepe S, Abilez OJ, Kuhl E. (2010) A generic approach towards finite growth with examples of athlete’s heart, cardiac dilation, and cardiac wall thickening. J. Mech. Phys. Solids 58, 1661-1680. (doi:10.1016/j.jmps.2010.07.003) · Zbl 1200.74109
[58] Zöllner AM, Buganza Tepole A, Gosain AK, Kuhl E. (2012) Growing skin: tissue expansion in pediatric forehead reconstruction. Biomech. Model. Mechanobiol. 11, 855-867. (doi:10.1007/s10237-011-0357-4)
[59] Lee CK, Mei CC. (1997) Re-examination of the equations of poroelasticity. Int. J. Eng. Sci. 35, 329-352. (doi:10.1016/S0020-7225(96)00083-3) · Zbl 0917.73010
[60] Gurtin ME, Fried E, Anand L. (2010) The mechanics and thermodynamics of continua. Cambridge, UK: Cambridge University Press.
[61] Marsden JE, Hughes TJR. (1994) Mathematical foundations of elasticity. Dover Civil and Mechanical Engineering Series. Mineola, NY: Dover
[62] Ogden RW. (1972) Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A 326, 565-584. (doi:10.1098/rspa.1972.0026) · Zbl 0257.73034
[63] Mooney M. (1940) A theory of large elastic deformation. J. Appl. Phys. 11, 582-592. (doi:10.1063/1.1712836) · JFM 66.1021.04
[64] Rivlin RS. (1948) Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Phil. Trans. R. Soc. Lond. A 241, 379-397. (doi:10.1098/rsta.1948.0024) · Zbl 0031.42602
[65] Galdi GP, Rannacher R. (2010)Fundamental trends in fluid-structure interaction. In Contemporary challenges in mathematical fluid dynamics and its applications, vol. 1. Singapore: World Scientific Publishing Company.
[66] Pruchnicki E. (1998) Hyperelastic homogenized law for reinforced elastomer at finite strain with edge effects. ACTA Mech. 129, 139-162. (doi:10.1007/BF01176742) · Zbl 0916.73028
[67] Bensoussan A, Lions J-L, Papanicolaou G. (1978) Asymptotic analysis for periodic structures. Amsterdam, The Netherlands: North-Holland. · Zbl 0411.60078
[68] Bakhvalov N, Panasenko G. (1989)Homogenisation: averaging processes in periodic media. Studies in Mathematics and its Applications, vol. 36. Dordrecht, The Netherlands: Kluwer. · Zbl 0692.73012
[69] Müller S. (1987) Homogenization of nonconvex integral functionals and cellular elastic materials. Arch. Rational Mech. Anal. 99, 189-212. (doi:10.1007/bf00284506) · Zbl 0629.73009
[70] Dal Maso G. (2012) An introduction to Γ-convergence, vol. 8. Berlin, Germany: Springer Science & Business Media.
[71] Braides A. (2002) Gamma-convergence for beginners. Oxford Lecture Series in Mathematics and Its Applications, vol. 22. Oxford, UK: Clarendon Press. · Zbl 1198.49001
[72] Roose T, Netti PA, Munn LL, Boucher Y, Jain RK. (2003) Solid stress generated by spheroid growth estimated using a linear poroelasticity model. Microvasc. Res. 66, 204-212. (doi:10.1016/S0026-2862(03)00057-8)
[73] Moeendarbary E, Valon L, Fritzsche M, Harris AR, Moulding DA, Thrasher AJ, Stride E, Mahadevan L, Charras GT. (2013) The cytoplasm of living cells behaves as a poroelastic material. Nat. Mater. 12, 253-261. (doi:10.1038/nmat3517)
[74] Baas E, Kuiper JH, Yang Y, Wood MA, El Haj AJ. (2010) In vitro bone growth responds to local mechanical strain in three-dimensional polymer scaffolds. J. Biomech. 43, 733-739. (doi:10.1016/j.jbiomech.2009.10.016)
[75] Penta R, Ambrosi D. (2015) The role of the microvascular tortuosity in tumor transport phenomena. J. Theor. Biol. 364, 80-97. (doi:10.1016/j.jtbi.2014.08.007) · Zbl 1405.92034
[76] Penta R, Gerisch A. (2015) Investigation of the potential of asymptotic homogenization for elastic composites via a three-dimensional computational study. Comp. Vis. Sci. 17, 185-201. (doi:10.1007/s00791-015-0257-8) · Zbl 1388.74086
[77] Penta R, Gerisch A. (2016) The asymptotic homogenization elasticity tensor properties for composites with material discontinuities. Continuum Mech. Thermodyn. 29, 187-206. (doi:10.1007/s00161-016-0526-x) · Zbl 1365.74146
[78] Irons L, Collis J, O’Dea RD. (2017)Microstructural influences on growth and transport in biological tissue: a multiscale description. In Modeling of microscale transport in biological processes (ed. S Becker), pp. 311-334. Amsterdam, The Netherlands: Elsevier.
[79] Barrault M, Maday Y, Nguyen NC, Patera AT. (2004) An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C. R. Acad. Sci. Paris Ser. I 339, 667-672. (doi:10.1016/j.crma.2004.08.006) · Zbl 1061.65118
[80] Ghommem M, Presho M, Calo VM, Efendiev Y. (2013) Mode decomposition methods for flows in high-contrast porous media: global-local approach. J. Comput. Phys. 253, 226-238. (doi:10.1016/j.jcp.2013.06.033) · Zbl 1349.76209
[81] Mehdi G, Calo VM, Efendiev Y. (2014) Mode decomposition methods for flows in high-contrast porous media: a global approach. J. Comput. Phys. 257, 400-413. (doi:10.1016/j.jcp.2013.09.031) · Zbl 1349.76208
[82] Schmid PJ. (2010) Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5-28. (doi:10.1017/S0022112010001217) · Zbl 1197.76091
[83] Abdulle A, Budáč O. (2015) A Petrov-Galerkin reduced basis approximation of the Stokes equation in parameterized geometries. Comp. Rendus Math. 353, 641-645. (doi:10.1016/j.crma.2015.03.019) · Zbl 1320.76057
[84] Abdulle A, Budáč O. (2016) A reduced basis finite element heterogeneous multiscale method for Stokes flow in porous media. Comp. Methods Appl. Mech. Eng. 307, 1-31. (doi:10.1016/j.cma.2016.03.016)
[85] Brown DL, Popov P, Efendiev Y. (2011) On homogenization of Stokes flow in slowly varying media with applications to fluid-structure interaction. GEM-Int. J. Geomath. 2, 281-305. (doi:10.1007/s13137-011-0025-y) · Zbl 1255.35029
[86] Shipley RJ, Chapman SJ. (2010) Multiscale modelling of fluid and drug transport in vascular tumours. Bull. Math. Biol. 72, 1464-1491. (doi:10.1007/s11538-010-9504-9) · Zbl 1198.92028
[87] Penta R, Ambrosi D, Quarteroni A. (2015) Multiscale homogenization for fluid and drug transport in vascularized malignant tissues. Math. · Zbl 1307.92062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.