×

A superconvergent HDG method for Stokes flow with strongly enforced symmetry of the stress tensor. (English) Zbl 1404.76162

Summary: This work proposes a superconvergent hybridizable discontinuous Galerkin (HDG) method for the approximation of the Cauchy formulation of the Stokes equation using same degree of polynomials for the primal and mixed variables. The novel formulation relies on the well-known Voigt notation to strongly enforce the symmetry of the stress tensor. The proposed strategy introduces several advantages with respect to the existing HDG formulations. First, it remedies the suboptimal behavior experienced by the classical HDG method for formulations involving the symmetric part of the gradient of the primal variable. The optimal convergence of the mixed variable is retrieved and an element-by-element postprocess procedure leads to a superconvergent velocity field, even for low-order approximations. Second, no additional enrichment of the discrete spaces is required and a gain in computational efficiency follows from reducing the quantity of stored information and the size of the local problems. Eventually, the novel formulation naturally imposes physical tractions on the Neumann boundary. Numerical validation of the optimality of the method and its superconvergent properties is performed in 2D and 3D using meshes of different element types.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
76D07 Stokes and related (Oseen, etc.) flows
PDF BibTeX XML Cite
Full Text: DOI arXiv Link

References:

[1] Arnold, D.; Falk, R.; Winther, R., Finite element exterior calculus, homological techniques, and applications, Acta Numer., 15, 1-155, (2006) · Zbl 1185.65204
[2] Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (2000) · Zbl 0958.76001
[3] Boffi, D.; Brezzi, F.; Fortin, M., Reduced symmetry elements in linear elasticity, Commun. Pure Appl. Anal., 8, 95-121, (2009) · Zbl 1154.74041
[4] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Elements Methods. Springer Series in Computational Mathematics. Springer, Berlin (1991) · Zbl 0788.73002
[5] Cangiani, A., Dong, Z., Georgoulis, E.H., Houston, P.: hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes. Springer International Publishing, Cham (2017) · Zbl 1382.65307
[6] Carrero, J.; Cockburn, B.; Schötzau, D., Hybridized globally divergence-free LDG methods. I. The Stokes problem, Math. Comp., 75, 533-563, (2006) · Zbl 1087.76061
[7] Cesmelioglu, A.; Cockburn, B.; Qiu, W., Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier-Stokes equations, Math. Comp., 86, 1643-1670, (2017) · Zbl 1422.65377
[8] Ciarlet, P.G.: The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics, vol. 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2002). Reprint of the 1978 original [North-Holland, Amsterdam]
[9] Cockburn, B.; Cui, J., An analysis of HDG methods for the vorticity-velocity-pressure formulation of the Stokes problem in three dimensions, Math. Comp., 81, 1355-1368, (2012) · Zbl 1250.76131
[10] Cockburn, B.; Dong, B.; Guzmán, J., A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems, Math. Comp., 77, 1887-1916, (2008) · Zbl 1198.65193
[11] Cockburn, B.; Fu, G., Superconvergence by \(M\)-decompositions. Part II: construction of two-dimensional finite elements, ESAIM Math. Model. Numer. Anal., 51, 165-186, (2017) · Zbl 1412.65205
[12] Cockburn, B.; Fu, G., Superconvergence by \(M\)-decompositions. Part III: construction of three-dimensional finite elements, ESAIM Math. Model. Numer. Anal., 51, 365-398, (2017) · Zbl 1412.65137
[13] Cockburn, B.; Fu, G.; Qiu, W., A note on the devising of superconvergent HDG methods for Stokes flow by \(M\)-decompositions, IMA J. Numer. Anal., 37, 730-749, (2017) · Zbl 1433.76077
[14] Cockburn, B.; Fu, G.; Sayas, FJ, Superconvergence by \(M\)-decompositions. Part I: general theory for HDG methods for diffusion, Math. Comp., 86, 1609-1641, (2017) · Zbl 1361.65084
[15] Cockburn, B.; Gopalakrishnan, J., Incompressible finite elements via hybridization. I. The Stokes system in two space dimensions, SIAM J. Numer. Anal., 43, 1627-1650, (2005) · Zbl 1145.76402
[16] Cockburn, B.; Gopalakrishnan, J., Incompressible finite elements via hybridization. II. The Stokes system in three space dimensions, SIAM J. Numer. Anal., 43, 1651-1672, (2005) · Zbl 1145.76403
[17] Cockburn, B.; Gopalakrishnan, J., The derivation of hybridizable discontinuous Galerkin methods for Stokes flow, SIAM J. Numer. Anal., 47, 1092-1125, (2009) · Zbl 1279.76016
[18] Cockburn, B.; Gopalakrishnan, J.; Lazarov, R., Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47, 1319-1365, (2009) · Zbl 1205.65312
[19] Cockburn, B.; Gopalakrishnan, J.; Nguyen, NC; Peraire, J.; Sayas, FJ, Analysis of HDG methods for Stokes flow, Math. Comp., 80, 723-760, (2011) · Zbl 1410.76164
[20] Cockburn, B.; Gopalakrishnan, J.; Sayas, FJ, A projection-based error analysis of HDG methods, Math. Comp., 79, 1351-1367, (2010) · Zbl 1197.65173
[21] Cockburn, B.; Guzmán, J.; Wang, H., Superconvergent discontinuous Galerkin methods for second-order elliptic problems, Math. Comp., 78, 1-24, (2009) · Zbl 1198.65194
[22] Cockburn, B., Karniadakis, G.E., Shu, C.W. (eds.): Discontinuous Galerkin Methods. Springer, Berlin Heidelberg (2000) · Zbl 1036.65079
[23] Cockburn, B.; Nguyen, NC; Peraire, J., A comparison of HDG methods for Stokes flow, J. Sci. Comput., 45, 215-237, (2010) · Zbl 1203.76079
[24] Cockburn, B.; Shi, K., Conditions for superconvergence of HDG methods for Stokes flow, Math. Comp., 82, 651-671, (2013) · Zbl 1322.65104
[25] Cockburn, B.; Shi, K., Devising HDG methods for Stokes flow: an overview, Comput. Fluids, 98, 221-229, (2014) · Zbl 1391.76315
[26] Di Pietro, D., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 69. Springer, Heidelberg (2012) · Zbl 1231.65209
[27] Pietro, D.; Ern, A., A hybrid high-order locking-free method for linear elasticity on general meshes, Comput. Methods Appl. Mech. Eng., 283, 1-21, (2015) · Zbl 1423.74876
[28] Donea, J., Huerta, A.: Finite Element Methods for Flow Problems. Wiley, New York (2003)
[29] Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences, vol. 159. Springer, New York (2004) · Zbl 1059.65103
[30] Ethier, CR; Steinman, DA, Exact fully 3d navierstokes solutions for benchmarking, Int. J. Numer. Methods Fluids, 19, 369-375, (1994) · Zbl 0814.76031
[31] Feng, X., Karakashian, O., Xing, Y. (eds.): Recent developments in discontinuous Galerkin finite element methods for partial differential equations, The IMA Volumes in Mathematics and its Applications, vol. 157. Springer, Cham (2014). 2012 John H. Barrett Memorial Lectures, selected papers from the workshop held at the University of Tennessee, Knoxville, May 9-11, 2012
[32] Fish, J., Belytschko, T.: A First Course in Finite Elements. Wiley, New York (2007) · Zbl 1135.74001
[33] Giorgiani, G.; Fernández-Méndez, S.; Huerta, A., Hybridizable discontinuous Galerkin with degree adaptivity for the incompressible Navier-Stokes equations, Comput. Fluids, 98, 196-208, (2014) · Zbl 1391.76332
[34] Hansbo, P.; Larson, MG, Piecewise divergence-free discontinuous Galerkin methods for Stokes flow, Commun. Numer. Methods Eng., 24, 355-366, (2008) · Zbl 1138.76046
[35] Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods. Algorithms, Analysis, and Applications. Texts in Applied Mathematics, vol. 54. Springer, New York (2008) · Zbl 1134.65068
[36] Lehrenfeld, C.; Schöberl, J., High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows, Comput. Methods Appl. Mech. Eng., 307, 339-361, (2016)
[37] Montlaur, A.; Fernández-Méndez, S.; Huerta, A., Discontinuous Galerkin methods for the Stokes equations using divergence-free approximations, Int. J. Numer. Methods Fluids, 57, 1071-1092, (2008) · Zbl 1338.76062
[38] Montlaur, A.; Fernandez-Mendez, S.; Peraire, J.; Huerta, A., Discontinuous Galerkin methods for the Navier-Stokes equations using solenoidal approximations, Int. J. Numer. Methods Fluids, 64, 549-564, (2010) · Zbl 1377.76008
[39] Nguyen, N.; Peraire, J.; Cockburn, B., A hybridizable discontinuous Galerkin method for Stokes flow, Comput. Methods Appl. Mech. Eng., 199, 582-597, (2010) · Zbl 1227.76036
[40] Nguyen, NC; Peraire, J.; Cockburn, B., An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations, J. Comput. Phys., 228, 3232-3254, (2009) · Zbl 1187.65110
[41] Nguyen, NC; Peraire, J.; Cockburn, B., An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations, J. Comput. Phys., 228, 8841-8855, (2009) · Zbl 1177.65150
[42] Nguyen, NC; Peraire, J.; Cockburn, B., An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations, J. Comput. Phys., 230, 1147-1170, (2011) · Zbl 1391.76353
[43] Oikawa, I., Analysis of a reduced-order HDG method for the Stokes equations, J. Sci. Comput., 67, 475-492, (2016) · Zbl 1381.76193
[44] Peraire, J.; Persson, PO, The compact discontinuous Galerkin (CDG) method for elliptic problems, SIAM J. Sci. Comput., 30, 1806-1824, (2008) · Zbl 1167.65436
[45] Poya, R.; Sevilla, R.; Gil, AJ, A unified approach for a posteriori high-order curved mesh generation using solid mechanics, Comput. Mech., 58, 457-490, (2016) · Zbl 1398.74472
[46] Qiu, W.; Shi, K., A superconvergent HDG method for the incompressible Navier-Stokes equations on general polyhedral meshes, IMA J. Numer. Anal., 36, 1943-1967, (2016) · Zbl 1433.76090
[47] Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. Society for Industrial and Applied Mathematics, Philadelphia (2008) · Zbl 1153.65112
[48] Sevilla, R.; Giacomini, M.; Karkoulias, A.; Huerta, A., A superconvergent hybridisable discontinuous Galerkin method for linear elasticity, Int. J. Numer. Methods Eng., 116, 91-116, (2018)
[49] Sevilla, R.; Hassan, O.; Morgan, K., An analysis of the performance of a high-order stabilised finite element method for simulating compressible flows, Comput. Methods Appl. Mech. Eng., 253, 15-27, (2013) · Zbl 1297.76105
[50] Sevilla, R.; Huerta, A.; Schröder, J. (ed.); Wriggers, P. (ed.), Tutorial on hybridizable discontinuous Galerkin (HDG) for second-order elliptic problems, No. 566, 105-129, (2016), Cham · Zbl 1356.65238
[51] Sevilla, R., Huerta, A.: HDG-NEFEM with degree adaptivity for Stokes flows. J. Sci. Comput. (2018). https://doi.org/10.1007/s10915-018-0657-2
[52] Stenberg, R., Some new families of finite elements for the Stokes equations, Numer. Math., 56, 827-838, (1990) · Zbl 0708.76088
[53] Xie, ZQ; Sevilla, R.; Hassan, O.; Morgan, K., The generation of arbitrary order curved meshes for 3D finite element analysis, Comput. Mech., 51, 361-374, (2013)
[54] Zhai, Q.; Zhang, R.; Wang, X., A hybridized weak galerkin finite element scheme for the Stokes equations, Sci. China Math., 58, 2455-2472, (2015) · Zbl 1338.76071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.