zbMATH — the first resource for mathematics

Shear reversal in dense suspensions: the challenge to fabric evolution models from simulation data. (English) Zbl 1404.76270
Summary: Dense suspensions of hard particles are important as industrial or environmental materials (e.g. fresh concrete, food, paint or mud). To date, most constitutive models developed to describe them are, explicitly or effectively, ‘fabric evolution models’ based on: (i) a stress rule connecting the macroscopic stress to a second-rank microstructural fabric tensor \(\mathbf{Q}\); and (ii) a closed time-evolution equation for \(\mathbf{Q}\). In dense suspensions, most of the stress comes from short-ranged pairwise steric or lubrication interactions at near-contacts (suitably defined), so a natural choice for \(\mathbf{Q}\) is the deviatoric second moment of the distribution \(P(\mathbf{p})\) of the near-contact orientations \(\mathbf{p}\). Here we test directly whether a closed time-evolution equation for such a \(\mathbf{Q}\) can exist, for the case of inertialess non-Brownian hard spheres in a Newtonian solvent. We perform extensive numerical simulations accessing high levels of detail for the evolution of \(P(\mathbf{p})\) under shear reversal, providing a stringent test for fabric evolution models. We consider a generic class of these models as defined by G. L. Hand [ibid. 13, 33–46 (1962; Zbl 0108.38402)] that assumes little as to the micromechanical behaviour of the suspension and is only constrained by frame indifference. Motivated by the smallness of microstructural anisotropies in the dense regime, we start with linear models in this class and successively consider those increasingly nonlinear in \(\mathbf{Q}\). Based on these results, we suggest that no closed fabric evolution model properly describes the dynamics of the fabric tensor under reversal. We attribute this to the fact that, while a second-rank tensor captures reasonably well the microstructure in steady flows, it gives a poor description during significant parts of the microstructural evolution following shear reversal. Specifically, the truncation of \(P(\mathbf{p})\) at second spherical harmonic (or second-rank tensor) level describes ellipsoidal distributions of near-contact orientations, whereas on reversal we observe distributions that are markedly four-lobed; moreover, \(\dot{P}(\mathbf{p})\) has oblique axes, not collinear with those of \(\mathbf{Q}\) in the shear plane. This structure probably precludes any adequate closure at second-rank level. Instead, our numerical data suggest that closures involving the coupled evolution of both a fabric tensor and a fourth-rank tensor might be reasonably accurate.

76T20 Suspensions
76A99 Foundations, constitutive equations, rheology, hydrodynamical models of non-fluid phenomena
Full Text: DOI
[1] Ball, R. C.; Melrose, J. R., A simulation technique for many spheres in quasi-static motion under frame-invariant pair drag and Brownian forces, Physica A, 247, 444-472, (1997)
[2] Batchelor, G. K., The stress system in a suspension of force-free particles, J. Fluid Mech., 41, 545-570, (1970) · Zbl 0193.25702
[3] Batchelor, G. K.; Green, J. T., The determination of the bulk stress in a suspension of spherical particles to order c2, J. Fluid Mech., 56, 401-427, (1972) · Zbl 0246.76108
[4] Bingham, C., An antipodally symmetric distribution on the sphere, Ann. Stat., 2, 1201-1225, (1974) · Zbl 0297.62010
[5] Blanc, F.; Lemaire, E.; Meunier, A.; Peters, F., Microstructure in sheared non-Brownian concentrated suspensions, J. Rheol., 57, 273-292, (2013)
[6] Blanc, F.; Lemaire, E.; Peters, F., Tunable fall velocity of a dense ball in oscillatory cross-sheared concentrated suspensions, J. Fluid Mech., 746, (2014) · Zbl 1416.76324
[7] Blanc, F.; Peters, F.; Lemaire, E., Experimental signature of the pair trajectories of rough spheres in the shear-induced microstructure in noncolloidal suspensions, Phys. Rev. Lett., 107, (2011)
[8] Blanc, F.; Peters, F.; Lemaire, E., Local transient rheological behavior of concentrated suspensions, J. Rheol., 55, 835-854, (2011)
[9] Boyer, F.; Guazzelli, É.; Pouliquen, O., Unifying suspension and granular rheology, Phys. Rev. Lett., 107, (2011)
[10] Boyer, F.; Pouliquen, O.; Guazzelli, É., Dense suspensions in rotating-rod flows: normal stresses and particle migration, J. Fluid Mech., 686, 5-25, (2011) · Zbl 1241.76008
[11] Brady, J. F.; Bossis, G., Stokesian dynamics, Annu. Rev. Fluid Mech., 20, 111-157, (1988)
[12] Brown, E.; Jaeger, H. M., Dynamic jamming point for shear thickening suspensions, Phys. Rev. Lett., 103, (2009)
[13] Brown, E.; Jaeger, H. M., The role of dilation and confining stresses in shear thickening of dense suspensions, J. Rheol., 56, 875-923, (2012)
[14] Castle, J.; Farid, A.; Woodcock, L. V., The effect of surface friction on the rheology of hard-sphere colloids, Prog. Colloid Polym. Sci., 100, 259-265, (1996)
[15] Chaubal, C. V.; Leal, L. G., A closure approximation for liquid-crystalline polymer models based on parametric density estimation, J. Rheol., 42, 177-201, (1998)
[16] Cheng, J.; Jia, X. Z.; Wang, Y. B., Numerical differentiation and its applications, Inverse Probl. Sci. Eng., 15, 339-357, (2007) · Zbl 1359.65035
[17] Cheng, X.; Mccoy, J. H.; Israelachvili, J. N.; Cohen, I., Imaging the microscopic structure of shear thinning and thickening colloidal suspensions, Science, 333, 1276-1279, (2011)
[18] Clavaud, C.; Bérut, A.; Metzger, B.; Forterre, Y., Revealing the frictional transition in shear-thickening suspensions, Proc. Natl Acad. Sci. USA, 114, 5147-5152, (2017)
[19] Comtet, J.; Chatté, G.; Niguès, A.; Bocquet, L.; Siria, A.; Colin, A., Pairwise frictional profile between particles determines discontinuous shear thickening transition in non-colloidal suspensions, Nat. Commun., 8, (2017)
[20] Couturier, É.; Boyer, F.; Pouliquen, O.; Guazzelli, É., Suspensions in a tilted trough: second normal stress difference, J. Fluid Mech., 686, 26-39, (2011) · Zbl 1241.76014
[21] Cundall, P. A.; Strack, O. D. L., A discrete numerical model for granular assemblies, Géotechnique, 29, 47-65, (1979)
[22] Dai, S.-C.; Bertevas, E.; Qi, F.; Tanner, R. I., Viscometric functions for noncolloidal sphere suspensions with Newtonian matrices, J. Rheol., 57, 493-510, (2013)
[23] Dbouk, T.; Lobry, L.; Lemaire, E., Normal stresses in concentrated non-Brownian suspensions, J. Fluid Mech., 715, 239-272, (2013) · Zbl 1284.76378
[24] Denn, M. M.; Morris, J. F., Rheology of non-Brownian suspensions, Annu. Rev. Chem. Biomol. Eng., 5, 203-228, (2014)
[25] Fernandez, N.; Mani, R.; Rinaldi, D.; Kadau, D.; Mosquet, M.; Lombois-Burger, H.; Cayer-Barrioz, J.; Herrmann, H. J.; Spencer, N. D.; Isa, L., Microscopic mechanism for shear thickening of non-Brownian suspensions, Phys. Rev. Lett., 111, (2013)
[26] Frankel, N. A.; Acrivos, A., On the viscosity of a concentrated suspension of solid spheres, Chem. Engng Sci., 22, 847-853, (1967)
[27] Gadala-Maria, F.; Acrivos, A., Shear-induced structure in a concentrated suspension of solid spheres, J. Rheol., 24, 799-814, (1980)
[28] Gallier, S.; Lemaire, E.; Peters, F.; Lobry, L., Rheology of sheared suspensions of rough frictional particles, J. Fluid Mech., 757, 514-549, (2014) · Zbl 1416.76326
[29] Giesekus, H., A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility, J. Non-Newtonian Fluid Mech., 11, 69-109, (1982) · Zbl 0492.76004
[30] Goddard, J. D., A dissipative anisotropic fluid model for non-colloidal particle dispersions, J. Fluid Mech., 568, 1-17, (2006) · Zbl 1177.76444
[31] Goddard, J. D., A weakly nonlocal anisotropic fluid model for inhomogeneous Stokesian suspensions, Phys. Fluids, 20, (2008) · Zbl 1182.76273
[32] Goddard, J. D., Continuum modeling of granular media, Appl. Mech. Rev., 66, (2014)
[33] Gurnon, A. K.; Wagner, N. J., Microstructure and rheology relationships for shear thickening colloidal dispersions, J. Fluid Mech., 769, 242-276, (2015)
[34] Guy, B. M.; Hermes, M.; Poon, W. C. K., Towards a unified description of the rheology of hard-particle suspensions, Phys. Rev. Lett., 115, (2015)
[35] Hand, G. L., A theory of anisotropic fluids, J. Fluid Mech., 13, 33-46, (1962) · Zbl 0108.38402
[36] Hinch, E. J.; Leal, L. G., Constitutive equations in suspension mechanics. Part 1. General formulation, J. Fluid Mech., 71, 481-495, (1975) · Zbl 0315.76057
[37] Hinch, E. J.; Leal, L. G., Constitutive equations in suspension mechanics. Part 2. Approximate forms for a suspension of rigid particles affected by Brownian rotations, J. Fluid Mech., 76, 187-208, (1976) · Zbl 0352.76005
[38] Hwang, W. R.; Hulsen, M. A., Direct numerical simulations of hard particle suspensions in planar elongational flow, J. Non-Newtonian Fluid Mech., 136, 167-178, (2006) · Zbl 1195.76403
[39] Jeffrey, D. J., The calculation of the low Reynolds number resistance functions for two unequal spheres, Phys. Fluids A, 4, 16-29, (1992)
[40] Jeffrey, D. J.; Onishi, Y., Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow, J. Fluid Mech., 139, 261-290, (1984) · Zbl 0545.76037
[41] Johnson, M. W.; Segalman, D., A model for viscoelastic fluid behavior which allows non-affine deformation, J. Non-Newtonian Fluid Mech., 2, 255-270, (1977) · Zbl 0369.76008
[42] Kanatani, K.-I., Distribution of directional data and fabric tensors, Int. J. Eng. Sci., 22, 149-164, (1984) · Zbl 0564.73014
[43] Kolli, V. G.; Pollauf, E. J.; Gadala-Maria, F., Transient normal stress response in a concentrated suspension of spherical particles, J. Rheol., 46, 321-334, (2002)
[44] Kraynik, A. M.; Reinelt, D. A., Extensional motions of spatially periodic lattices, Intl J. Multiphase Flow, 18, 1045-1059, (1992) · Zbl 1144.76408
[45] Kuzuu, N.; Doi, M., Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation, J. Phys. Soc. Japan, 52, 3486-3494, (1983)
[46] Larson, R. G., Constitutive Equations for Polymer Melts and Solutions, (2013), Butterworth-Heinemann
[47] Lees, A. W.; Edwards, S. F., The computer study of transport processes under extreme conditions, J. Phys. C Solid State Phys., 5, 1921-1928, (1972)
[48] Lin, N. Y. C.; Guy, B. M.; Hermes, M.; Ness, C.; Sun, J.; Poon, W. C. K.; Cohen, I., Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions, Phys. Rev. Lett., 115, (2015)
[49] Lin, N. Y. C.; Ness, C.; Cates, M. E.; Sun, J.; Cohen, I., Tunable shear thickening in suspensions, Proc. Natl Acad. Sci. USA, 113, 10774-10778, (2016)
[50] Lootens, D.; Van Damme, H.; Hémar, Y.; Hébraud, P., Dilatant flow of concentrated suspensions of rough particles, Phys. Rev. Lett., 95, (2005)
[51] Luding, S., Cohesive, frictional powders: contact models for tension, Granul. Matt., 10, 235-246, (2008) · Zbl 1304.74019
[52] Magnanimo, V.; Luding, S., A local constitutive model with anisotropy for ratcheting under 2D axial-symmetric isobaric deformation, Granul. Matt., 13, 225-232, (2011)
[53] Mari, R.; Seto, R.; Morris, J. F.; Denn, M. M., Shear thickening, frictionless and frictional rheologies, J. Rheol., 58, 1693-1724, (2014)
[54] Mari, R.; Seto, R.; Morris, J. F.; Denn, M. M., Discontinuous shear thickening in Brownian suspensions by dynamic simulation, Proc. Natl Acad. Sci. USA, 112, 15326-15330, (2015)
[55] Morris, J. F.; Katyal, B., Microstructure from simulated Brownian suspension flows at large shear rate, Phys. Fluids, 14, 1920-1937, (2002) · Zbl 1185.76267
[56] Narumi, T.; See, H.; Honma, Y.; Hasegawa, T.; Takahashi, T.; Phan-Thien, N., Transient response of concentrated suspensions after shear reversal, J. Rheol., 46, 295-305, (2002)
[57] Nazockdast, E.; Morris, J. F., Microstructural theory and the rheology of concentrated colloidal suspensions, J. Fluid Mech., 713, 420-452, (2012) · Zbl 1284.76382
[58] Nazockdast, E.; Morris, J. F., Pair-particle dynamics and microstructure in sheared colloidal suspensions: simulation and Smoluchowski theory, Phys. Fluids, 25, (2013)
[59] Ness, C.; Sun, J., Two-scale evolution during shear reversal in dense suspensions, Phys. Rev. E, 93, (2016)
[60] Noll, W.1955 On the continuity of the solid and fluid states. PhD thesis, Indiana University. · Zbl 0064.42001
[61] Peters, F.; Ghigliotti, G.; Gallier, S.; Blanc, F.; Lemaire, E.; Lobry, L., Rheology of non-Brownian suspensions of rough frictional particles under shear reversal: a numerical study, J. Rheol., 60, 715-732, (2016)
[62] Peters, I. R.; Majumdar, S.; Jaeger, H. M., Direct observation of dynamic shear jamming in dense suspensions, Nature, 532, 214-217, (2016)
[63] Phan-Thien, N., Constitutive equation for concentrated suspensions in Newtonian liquids, J. Rheol., 39, 679-695, (1995)
[64] Phan-Thien, N.; Fan, X.-J.; Khoo, B. C., A new constitutive model for monodispersed suspensions of spheres at high concentrations, Rheol. Acta, 38, 297-304, (1999)
[65] Qi, L., Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines, J. Symb. Comput., 41, 1309-1327, (2006) · Zbl 1121.14050
[66] Rivlin, R., Further remarks on the stress-deformation relations for isotropic materials, Indiana Univ. Math. J., 4, 681-702, (1955) · Zbl 0064.42101
[67] Seto, R.; Giusteri, G. G.; Martiniello, A., Microstructure and thickening of dense suspensions under extensional and shear flows, J. Fluid Mech., 825, (2017) · Zbl 1374.76231
[68] Seto, R.; Mari, R.; Morris, J. F.; Denn, M. M., Discontinuous shear thickening of frictional hard-sphere suspensions, Phys. Rev. Lett., 111, (2013)
[69] Singh, A.; Nott, P. R., Experimental measurements of the normal stresses in sheared Stokesian suspensions, J. Fluid Mech., 490, 293-320, (2003) · Zbl 1063.76512
[70] Stickel, J. J.; Phillips, R. J.; Powell, R. L., A constitutive model for microstructure and total stress in particulate suspensions, J. Rheol., 50, 379-413, (2006)
[71] Sun, J.; Sundaresan, S., A constitutive model with microstructure evolution for flow of rate-independent granular materials, J. Fluid Mech., 682, 590-616, (2011) · Zbl 1241.76416
[72] Wagner, N. J.; Ackerson, B. J., Analysis of nonequilibrium structures of shearing colloidal suspensions, J. Chem. Phys., 97, 1473-1483, (1992)
[73] Zarraga, I. E.; Hill, D. A.; Leighton, D. T., The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids, J. Rheol., 44, 185-220, (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.